精英家教网 > 高中数学 > 题目详情
2.已知复数z满足|z-1|=|z-i|,其中i为虚数单位,且z+$\frac{1}{z}$为实数,则z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

分析 设z=a+bi(a,b∈R),利用复数代数形式的乘除运算、模的计算公式、复数为实数的充要条件即可得出.

解答 解:设z=a+bi(a,b∈R),∵复数z满足|z-1|=|z-i|,且z+$\frac{1}{z}$为实数,
∴$\sqrt{(a-1)^{2}+{b}^{2}}=\sqrt{{a}^{2}+(b-1)^{2}}$,a+bi+$\frac{1}{a+bi}$=a+bi+$\frac{a-bi}{{a}^{2}+{b}^{2}}$,即$\frac{b({a}^{2}+{b}^{2})-b}{{a}^{2}+{b}^{2}}=0$,
联立解得a=b=$\frac{\sqrt{2}}{2}$或$a=b=-\frac{\sqrt{2}}{2}$或a=b=0(舍去).
∴z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或z=$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.
故答案为:$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

点评 本题考查了复数代数形式的乘除运算、模的计算公式、复数为实数的充要条件,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为(  )
A.0.85B.0.819 2C.0.8D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点P(-4,-3m)在角α的终边上,且sinα=$\frac{3}{5}$,则cos(α+$\frac{π}{3}$)的值为(  )
A.-$\frac{4+3\sqrt{3}}{10}$B.-$\frac{4-3\sqrt{3}}{10}$C.-$\frac{4\sqrt{3}+3}{10}$D.-$\frac{4\sqrt{3}-3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则|$\overrightarrow{b}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题:?x∈R,x2+x-1≥0的否定是(  )
A.?x0∈R,x02+x0-1≥0B.?x0∈R,x02+x0-1<0
C.?x∈R,x2+x-1≤0D.?x∈R,x2+x-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,小圆圈表示网络的结点,结点之间的连线表示有网线相连.连线上标注的数字表示该网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可沿不同的路径同时传递,则单位的时间内传递的最大信息量是(  )
A.26B.24C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=tan(ωx-$\frac{π}{3}$)(ω>0)的最小正周期为$\frac{π}{2}$,则函数f(x)的一个单调递增区间是(  )
A.(-$\frac{π}{6}$,$\frac{π}{12}$)B.($\frac{π}{4}$,$\frac{7π}{12}$)C.($\frac{π}{3}$,$\frac{5π}{6}$)D.(-$\frac{7π}{12}$,-$\frac{π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆柱的底面直径为4,高为5,则该圆柱的侧面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x,y∈(0,+∞),x2+y2=2x+2y.
(1)求$\frac{1}{x}$+$\frac{1}{y}$的最小值;
(2)是否存在x,y,满足(x+1)(y+1)=10?并说明理由.

查看答案和解析>>

同步练习册答案