精英家教网 > 高中数学 > 题目详情
7.如图,小圆圈表示网络的结点,结点之间的连线表示有网线相连.连线上标注的数字表示该网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可沿不同的路径同时传递,则单位的时间内传递的最大信息量是(  )
A.26B.24C.20D.19

分析 根据题意,结合图形得出从A到B传播路径有4条,写出每条途径传播的最大信息量,再求和.

解答 解:根据题意,结合图形知,
从A到B传播路径有4条,如图所示;

途径①最大信息量为3,途径②最大信息量为4;
途径③最大信息量为6,途径④最大信息量为6;
所以从A向B传递信息,
单位时间内传递的最大信息量为3+4+6+6=19.
故选:D.

点评 本题考查合情推理以及分类计数原理的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n为奇数}\\{{a}_{n}-3n,n为偶数}\end{array}\right.$.
(1)证明:数列{a2n-$\frac{3}{2}$}是等比数列;     
(2)求a2n及a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a∈(0,1),则不等式ln(3a-1)<0成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为(  )
A.216B.100C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z满足|z-1|=|z-i|,其中i为虚数单位,且z+$\frac{1}{z}$为实数,则z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正六棱锥底边长为1,侧棱与底面所成的角为45°,则它的斜高等于$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知结论“圆x2+y2=r2(r>0)上一点P(x0,y0)处切线方程为$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.类比圆的这个结论得到关于椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在点P(x0,y0)的切线方程为$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120-130分的学生人数为30人
(1)求这所学校分数在90-140分的学生人数
(2)请根据频率分布直方图估计这所学校学生分数在90-140分的学生的平均成绩
(3)为进一步了解学生的学习情况,按分层抽样方法从分数在90-100分和120-130分的学生中抽出5人,从抽出的学生中选出2人分别做问卷A和问卷B,求90-100分的学生做问卷A,120-130分的学生做问卷B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知扇形的周长是6cm,面积是2cm2,则扇形的圆心角的弧度数为(  )
A.1B.4C.1 或4D.2 或4

查看答案和解析>>

同步练习册答案