精英家教网 > 高中数学 > 题目详情
1.若平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则|$\overrightarrow{b}$|=1.

分析 根据题意,由$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$)可得$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$=0,变形可得有$\overrightarrow{a}$•$\overrightarrow{b}$的值,又由数量积的计算公式可得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=$\frac{1}{2}$(|$\overrightarrow{b}$|),将其变形即可得答案.

解答 解:根据题意,若$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow{b}$)=$\overrightarrow{a}$2-2$\overrightarrow{a}$•$\overrightarrow{b}$=0,
则有$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$($\overrightarrow{a}$2)=$\frac{1}{2}$,
又由$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=$\frac{1}{2}$(|$\overrightarrow{b}$|),
即|$\overrightarrow{b}$|=1;
故答案为:1.

点评 本题考查向量数量积的运算,关键是掌握向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在极坐标系中,A为直线3ρcosθ+4ρsinθ+13=0上的动点,B为曲线ρ+2cosθ=0上的动点,则|AB|的最小值为(  )
A.1B.2C.$\frac{11}{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{a}$=(2cosθ,sinθ),$\overrightarrow{b}$=(1,-2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\frac{3sinθ-2cosθ}{2sinθ+cosθ}$的值;
(2)若θ=45°,2$\overrightarrow{a}$-t$\overrightarrow{b}$与$\sqrt{2}$$\overrightarrow{a}$+$\overrightarrow{b}$垂直,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a∈(0,1),则不等式ln(3a-1)<0成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2-1-lnx,其中a∈R
(1)探讨f(x)的单调性
(2)若f(x)≥x对x∈(1,+∞)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用数字0,l,2,3,4,5六个数字可以组成无重复的三位数的个数为(  )
A.216B.100C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z满足|z-1|=|z-i|,其中i为虚数单位,且z+$\frac{1}{z}$为实数,则z=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$或$-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知结论“圆x2+y2=r2(r>0)上一点P(x0,y0)处切线方程为$\frac{{{x_0}x}}{r^2}+\frac{{{y_0}y}}{r^2}=1$”.类比圆的这个结论得到关于椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$在点P(x0,y0)的切线方程为$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线(tan$\frac{π}{3}$)•x+y+1=0的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案