精英家教网 > 高中数学 > 题目详情
已知(2x+
3
x
n展开式中各项系数和为625,则展开式中含x项的系数为(  )
A、216B、224
C、240D、250
分析:利用赋值法求出展开式中各项系数和,列出方程解得n;再利用二项展开式的通项公式求出第r+1项,令x的指数为1求出展开式中含x项的系数.
解答:解:令二项式中的x=1得展开式中各项系数和为5n
∵展开式中各项系数和为625
∴5n=625
∴n=4
(2x+
3
x
)
n
=(2x+
3
x
)
4

(2x+
3
x
)
4
的二项展开式的通项为Tr+1=
C
r
4
(2x)4-r(
3
x
)
r
=3r24-r
C
r
4
x4-
3r
2

4-
3r
2
=1
解得r=2
∴展开式中含x项的系数为9×4C42=216
故选A.
点评:本题考查求二项展开式中各项系数和的方法是赋值法;考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
2
,g(x)=log2x,F(x)=f(x)-g(x)

(1)在同一在直角坐标系内作出函数f(x),g(x)的图象;
(2)利用图象求F(x)>0的解集;
(3)已知函数y=F(x)-
1
2
的零点是1和x0,若x0∈(n,n+1)(n∈N),求n的值;
(4)若已知x(x2+3x-6)>0,解不等式:2x+3x22
6
x
•(x2+3x-6)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列四个命题:
①把y=2cos(3x+
π
6
)的图象上每点的横坐标和纵坐标都变为原来的
3
2
倍,再把图象向右平移
π
2
单位,所得图象解析式为y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,则m⊥n
③在△ABC中,M是BC的中点,AM=3,点P在AM上且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
 )
等于-4.
④函数f(x)=xsinx在区间[0,
π
2
]
上单调递增,函数f(x)在区间[-
π
2
,0]
上单调递减.
其中是真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
>2
x2+
2
x
>3
x3+
3
x
>4
…可以推广为(  )
A、xn+
n
x
>n
B、xn+
n
x
>n+1
C、xn+
n+1
x
>n+1
D、xn+
n+1
x
>n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知函数f(x)=lnx+ax2-3x,且在x=1时函数f(x)取得极值.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若g(x)=x2-2x-1(x>0),
①证明:当x>1时,g(x)的图象恒在f(x)的上方;
②证明不等式(2n+1)2>4ln(n!)恒成立.(注:(n!=1×2×3×…×n))

查看答案和解析>>

同步练习册答案