精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
2
,g(x)=log2x,F(x)=f(x)-g(x)

(1)在同一在直角坐标系内作出函数f(x),g(x)的图象;
(2)利用图象求F(x)>0的解集;
(3)已知函数y=F(x)-
1
2
的零点是1和x0,若x0∈(n,n+1)(n∈N),求n的值;
(4)若已知x(x2+3x-6)>0,解不等式:2x+3x22
6
x
•(x2+3x-6)2
分析:(1)根据F(x)=
1
2
x-log2x
(x>0)分类讨论:当0<x≤1时,当1<x<2时,比较f(x)和g(x)函数值的大小,进一步得出函数f(x)=
1
2
x
,g(x)=log2x的图象有2个交点,再画出图象.
(2)由图象可得,当0<x<2,或x>2时,f(x)>g(x),当2<x<4时,f(x)<g(x),从而得出F(x)>0的解集;
(3)由函数y=F(x)-
1
2
的零点是1可得
1
2
x-log2x-
1
2
=0
即x-1-2log2x=0的根为1和x0令G(x)=x-1-2log2x根据零点存在定理可知,x0∈(5,6)从而得出n=5;
(4)先对不等式:2x+3x22
6
x
•(x2+3x-6)2.两边取以2为底的对数得:x+3+log2x2
6
x
+log2(x2+3x-6)2最后整理成
1
2
x2+3x-6
x
)<log2
x2+3x-6
x
,从而由(1)得出2<
x2+3x-6
x
<4.解之即可.
解答:解:(1)∵F(x)=
1
2
x-log2x
(x>0)
当0<x≤1时,f(x)>0,g(x)<0.f(x)>g(x)
当1<x<2时,f(x)>g(x)
而f(2)=g(2)=1,f(4)=g(4)=2但是函数f(x)=
1
2
x
与g(x)=log2x在(4,+∞)都是单调递增,
但是函数f(x)比函数g(x)的增加速度快
当x>4时,f(x)>g(x)
∴函数f(x)=
1
2
x
,g(x)=log2x的图象有2个交点,其图象如图所示


(2)由图象可得,当0<x<2,或x>2时,f(x)>g(x),即F(x)>0
当2<x<4时,f(x)<g(x),即F(x)<0
∴F(x)>0的解集为{x|0<x<2或x>4}.

(3)由函数y=F(x)-
1
2
的零点是1可得
1
2
x-log2x-
1
2
=0
即x-1-2log2x=0的根为1和x0
令G(x)=x-1-2log2x
G(1)=0,而G(6)=5-2log26>0,G(5)=4-2log25<0
根据零点存在定理可知,x0∈(5,6)
∴n=5.
(4)不等式:2x+3x22
6
x
•(x2+3x-6)2
两边取以2为底的对数得:
x+3+log2x2
6
x
+log2(x2+3x-6)2
即x+3-
6
x
<log2(x2+3x-6)2-log2x2
1
2
x2+3x-6
x
)<log2
x2+3x-6
x

从而由(1)得出2<
x2+3x-6
x
<4.
x>0
2x<x2+3x-6<4x
①或
x<0
2x>x2+3x-6>4x

解①得2<x<3;解②得-3<x<-2
∴原不等式的解集为(-3,-2)∪(2,3).
点评:本小题主要考查函数单调性的应用、对数函数的图象与性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案