精英家教网 > 高中数学 > 题目详情

是否存在角α,β,α∈,β∈(0,π),使等式同时成立.

若存在,求出α,β的值;若不存在,说明理由.


解 由条件,得

①2+②2,得sin2α+3cos2α=2,③

又因为sin2α+cos2α=1,④

由③④得sin2α=,即sin α=±

因为α∈,所以α=或α=-

当α=,代入②得cos β=,又β∈(0,π),

所以β=时,代入①可知符合.

当α=-时,代入②得cos β=,又β∈(0,π),

所以β=

代入①可知不符合.

综上所述,存在α=,β=满足条件.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


如图,在四棱锥中,底面为直角梯形,且

侧面底面, 若.

(1)求证:平面

(2)求二面角的余弦值.

 


查看答案和解析>>

科目:高中数学 来源: 题型:


从某班甲、乙、丙等10名同学中选出3个人参加汉字听写,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:


某程序框图如图所示,若输出的S=57,则判断框内为 (  )

A.k>4?       B.k>5?     C.k>6?  D.k>7?

      

查看答案和解析>>

科目:高中数学 来源: 题型:


 将二进制数101101(2)化为八进制数,结果为      

查看答案和解析>>

科目:高中数学 来源: 题型:


若变量满足约束条件,则的最大值是                (   )

A.        B.         C.       D.

查看答案和解析>>

科目:高中数学 来源: 题型:


设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,则的取值范围是                                       (  )

A.       B.       C.    D.

查看答案和解析>>

科目:高中数学 来源: 题型:


一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为(     )

A.        B.         C.        D. 

查看答案和解析>>

科目:高中数学 来源: 题型:


下列函数中,最小正周期为的是(  )

A.    B.      C.        D.

查看答案和解析>>

同步练习册答案