精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+c(a>0),α、β为方程f(x)=x的两根,且0<α<β<
0<x<α,给出下列不等式,其中成立的是                                                (   )
①x<f(x)                          ②α<f(x)                 ③x>f(x)                  ④α>f(x)
A.①④B.③④C.①②D.②④
A
设F(x)=f(x)-x,由已知α、β是F(x)=0的两根,∴F(x)=a(x-α)(x-β).
在x∈(0,α)时,f(x)-x=F(x)=a(x-α)(α-β).
∵a>0,x-α<0,x-β<0,∴F(x)>0.∴f(x)>x.
又a-f(x)=α-[F(x)+x]=α-x-F(x)=α-x-a(x-α)(x-β)=(α-x)[1+a(α-β)].
∵0<x<α<β<,∴aβ<1.∴1+a(x-β)=1+ax-aβ>1-aβ>0.
而α-x>0,∴α-f(x)>0.∴f(x)<α. 故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数yx2+1的图象与直线yx相切,则=             (   )
A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设二次函数如果(其中),则(▲)
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题11分)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).
(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;
(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,求出S与t之间的函数关系式和相应的自变量t的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数满足:(1),(2)被轴截得的弦长为2,(3)在轴截距为6,求此函数解析式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说
明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果函数在区间上是减函数,则实数的取值范围是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.其中
(1)若函数的图像的一个公共点恰好在x轴上,求的值;w
(2)若函数图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.
(3)若是方程的两根,且满足
证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)求的最小值
(Ⅱ)若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案