精英家教网 > 高中数学 > 题目详情
已知函f(x)=1﹣2ax﹣a2x(a>1)
(1)求函f(x)的值域;
(2)若x∈[﹣2,1]时,函f(x)的最小值﹣7,求a的值和函f(x) 的最大值.
解:设ax=t>0
∴y=﹣t2﹣2t+1=﹣(t+1)2+2
(1)∵t=﹣1(1,+∞)
∴y=﹣t2﹣2t+1在(0,+∞)上是减函数
∴y<1所以值域为(﹣∞,1)
(2)∵x∈[﹣2,1],a>1
∴t∈[,a]
由t=﹣1[,a]
∴y=﹣t2﹣2t+1在[,a]上是减函数
∵﹣a2﹣2a+1=﹣7
∴a=2或a=﹣4(不合题意舍去)
当t==时,y有最大值,ymax=﹣()2﹣2×+1=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=1-2ax-a2x(a>1)
(1)求函f(x)的值域;
(2)若x∈[-2,1]时,函f(x)的最小值-7,求a的值和函f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=1+logax(a>0且a≠1),f-1(x)是f(x)的反函数,若y=f-1(x)的图象过点(3,4),则a=
2
2

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函f(x)=1+logax(a>0且a≠1),f-1(x)是f(x)的反函数,若y=f-1(x)的图象过点(3,4),则a=   

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学二模试卷(理科)(解析版) 题型:解答题

已知函f(x)=1+logax(a>0且a≠1),f-1(x)是f(x)的反函数,若y=f-1(x)的图象过点(3,4),则a=   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函f(x)=1-2ax-a2x(a>1)
(1)求函f(x)的值域;
(2)若x∈[-2,1]时,函f(x)的最小值-7,求a的值和函f(x) 的最大值.

查看答案和解析>>

同步练习册答案