精英家教网 > 高中数学 > 题目详情
18.过抛物线y2=4x的焦点F的直线交该抛物线于点A.若|AF|=3,则点A的坐标为(2,±2$\sqrt{2}$).

分析 确定抛物线y2=4x的准线方程,利用抛物线的定义,可求A点的横坐标,即可得出A的坐标.

解答 解:抛物线y2=4x的准线方程为x=-1,焦点F(1,0).
设A(x,y),
∵|AF|=3,
∴根据抛物线的定义可得|AF|=3=x+1,
∴x=2,
∴y=±2$\sqrt{2}$,
∴A的坐标为(2,±2$\sqrt{2}$).
故答案为:(2,±2$\sqrt{2}$).

点评 抛物线的定义告诉我们:抛物线上的点到焦点的距离等于它到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知数列{an}的前n项和${S_n}=3{n^2}-2n+1$,求通项公式an
(2)在数列{an}中,a1=1,an+1-an=2n+1,求数列的通项an
(3)在数列{an}中,a1=1,前n项和${S_n}=\frac{n+2}{3}{a_n}$,求{an}的通项公式an
(4)已知在每项均大于零的数列{an}中,首项a1=1,且前n项和Sn满足${S_n}\sqrt{{S_{n-1}}}-{S_{n-1}}\sqrt{S_n}=2\sqrt{{S_n}{S_{n-1}}}$(n∈N*,n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={(x,y)|x,y∈R},$P=\left\{{(x,y)|\left\{{\begin{array}{l}{3x+4y-12>0}\\{2x-y-8<0}\\{x-2y+6>0}\end{array},x,y∈R}\right.}\right\}$Q={(x,y)|x2+y2≤r2,r∈R+},若Q⊆∁UP恒成立,则实数r的最大值是$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=ex-ax-1为增函数,则a的取值范围为a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出下列命题的否定并判断真假:
(1)所有自然数的平方是正数;
(2)任何实数x都是方程5x-12=0的根;
(3)?x∈R,x2-3x+3>0;     
(4)有些质数不是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是R上的奇函数,对于?x∈(0,+∞)都有f(x+2)=-f(x),且x∈(0,1]时,f(x)=2x+1,则f(-2015)+f(2016)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线f(x)=x3-2x2+1
(1)求在点P(1,0)处的切线l1的方程;
(2)求经过点Q(2,1)且与已知曲线f(x)相切的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在区间(0,4]内随机取两个数a、b,则使得“命题‘?x∈R,不等式x2+ax+b2>0恒成立’为真命题”的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=lnx-$\frac{1}{2}$ax2-2x.
(Ⅰ)当a=3时,求f(x)的单调区间;
(Ⅱ)若?a∈(-1,+∞),?x∈(1,e),有f(x)-b<0,求实数b的取值范围.

查看答案和解析>>

同步练习册答案