分析 (1)${S_n}=3{n^2}-2n+1$,n=1时,a1=S1=2;n≥2时,an=Sn-Sn-1,即可得出.
(2)a1=1,an+1-an=2n+1,利用“累加求和”方法、等差数列的求和公式即可得出.
(3)a1=1,前n项和${S_n}=\frac{n+2}{3}{a_n}$,n≥2时,an=Sn-Sn-1,可得:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,利用“累乘求积”即可得出.
(4)由${S_n}\sqrt{{S_{n-1}}}-{S_{n-1}}\sqrt{S_n}=2\sqrt{{S_n}{S_{n-1}}}$(n∈N*,n≥2),可得$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=2,利用等差数列的通项公式及其递推关系即可得出.
解答 解:(1)∵${S_n}=3{n^2}-2n+1$,
∴n=1时,a1=S1=2;
n≥2时,an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5.
由n=1时,6n-5=1≠2,
∴an=$\left\{\begin{array}{l}{2,n=1}\\{6n-5,n≥2}\end{array}\right.$.
(2)∵a1=1,an+1-an=2n+1,
∴n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-1)+(2n-3)+…+3+1
=$\frac{n(2n-1+1)}{2}$=n2.
n=1时,n2=1也成立.
∴an=n2.
(3)a1=1,前n项和${S_n}=\frac{n+2}{3}{a_n}$,
∴n≥2时,an=Sn-Sn-1=$\frac{n+2}{3}{a}_{n}$-$\frac{n+1}{3}$an-1,
化为:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n-1}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}$•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n+1}{n-1}$•$\frac{n}{n-2}$•$\frac{n-1}{n-3}$•…•$\frac{4}{2}$•$\frac{3}{1}$×1,
=$\frac{n(n+1)}{2}$.n=1时也成立.
∴an=$\frac{n(n+1)}{2}$.
(4)∵${S_n}\sqrt{{S_{n-1}}}-{S_{n-1}}\sqrt{S_n}=2\sqrt{{S_n}{S_{n-1}}}$(n∈N*,n≥2),
∴$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=2,
∴数列$\{\sqrt{{S}_{n}}\}$是等差数列,首项为1,公差为2,
∴$\sqrt{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=(2n-1)2,
∴n≥2时,an=Sn-Sn-1=(2n-1)2-(2n-3)2=8n-8,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{8n-8,n≥2}\end{array}\right.$.
点评 本题考查了递推关系、“累加求和”方法、等差数列的通项公式及其求和公式、“累乘求积”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{8}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -e | B. | -eln2 | C. | $-\frac{1}{e}$ | D. | $-\frac{1}{eln2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3<a<0 | B. | a>-3 | C. | a<-3 | D. | $a>-\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com