精英家教网 > 高中数学 > 题目详情
19.已知抛物线$\frac{1}{4}{y^2}=x$的焦点为F,点A(2,2),点P在抛物线上,则|PA|+|PF|的最小值为3.

分析 设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|进而把问题转化为求|PA|+|PD|取得最小,进而可推断出当D,P,A三点共线时|PA|+|PD|最小,答案可得.

解答 解:设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,
当D,P,A三点共线时|PA|+|PD|最小,为2-(-1)=3,
故答案为:3.

点评 本题考查椭圆的定义、标准方程,以及简单性质的应用,判断当D,P,A三点共线时|PA|+|PD|最小,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过点(0,-2)的直线交抛物线y2=16x于A(x1,y1),B(x2,y2)两点,且y12-y22=1,则△OAB(O为坐标原点)的面积为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=ax-lnx,a∈R.
(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(2)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知p:关于x的不等式x2+2ax-a≤0有解,q:a>0或a<-1,则p是q的必要不充分条件.(空格处请填写“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若集合A={x∈N|x>1},B={x|-3<x<7},则集合A∩B的元素的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高校“统计初步“课程教师随机调查了选该科的一些学生情况,共调查了50人,其中女生27人,男生23人.女生中有20人选统计专业,另外7人选非统计专业,男生中有10人选统计专业,另外13人选非统计专业.
(1)根据以上数据完成下列的2×2联列表:
  专业
性别
非统计专业统计专业合计
合计
(2)根据以上数据,能否在犯错误的概率不超过0.05的情况下,认为主修统计专业与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$a=\frac{1}{ln10},b={(lge)^2},c=lg\sqrt{e}$,则有(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知数列{an}的前n项和${S_n}=3{n^2}-2n+1$,求通项公式an
(2)在数列{an}中,a1=1,an+1-an=2n+1,求数列的通项an
(3)在数列{an}中,a1=1,前n项和${S_n}=\frac{n+2}{3}{a_n}$,求{an}的通项公式an
(4)已知在每项均大于零的数列{an}中,首项a1=1,且前n项和Sn满足${S_n}\sqrt{{S_{n-1}}}-{S_{n-1}}\sqrt{S_n}=2\sqrt{{S_n}{S_{n-1}}}$(n∈N*,n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={(x,y)|x,y∈R},$P=\left\{{(x,y)|\left\{{\begin{array}{l}{3x+4y-12>0}\\{2x-y-8<0}\\{x-2y+6>0}\end{array},x,y∈R}\right.}\right\}$Q={(x,y)|x2+y2≤r2,r∈R+},若Q⊆∁UP恒成立,则实数r的最大值是$\frac{12}{5}$.

查看答案和解析>>

同步练习册答案