分析 (1)求出函数的导数,求出f′(2)的值,从而求出切线方程即可;
(2)先求出函数f(x)的导数,通过讨论a的范围,得到函数的单调区间,从而求出a的值.
解答 解:(1)∵f(x)=x-lnx,f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$ …(1分)
∴切线的斜率是f′(2)=$\frac{1}{2}$,又切点是(2,2-ln2)…(2分)
∴切线的方程是:x-2y+2-2ln2=0 …(4分)
(2)由f(x)=ax-lnx,得f′(x)=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,x∈(0,e],
①当a≤0时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,
a=$\frac{4}{e}$(舍去),所以,此时f(x)无最小值. …(8分)
②当0<$\frac{1}{a}$<e时,f(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a}$,e]上单调递增,
f(x)min=f($\frac{1}{a}$)=1+lna=3,a=e2,满足条件. …(9分)
③当$\frac{1}{a}$≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae-1=3,a=$\frac{4}{e}$(舍去),所以,此时f(x)无最小值. …(10分)
综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.…(12分)
点评 本题考察了函数的单调性,最值问题,考察导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | (3,5) | B. | ($\sqrt{3},\sqrt{5}$) | C. | ($\sqrt{3},5$) | D. | ($\sqrt{5},3$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k∈[-$\frac{3}{4}$,0) | B. | k∈(0,$\frac{4}{3}$] | C. | k∈(0,$\frac{3}{4}$] | D. | k∈[-$\frac{3}{4}$,$\frac{3}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{8}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{z}$的实部为-1 | B. | $\overrightarrow{z}$的虚部为-2i | C. | z•$\overrightarrow{z}$=5 | D. | $\frac{\overrightarrow{z}}{z}$=i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com