精英家教网 > 高中数学 > 题目详情
8.曲线x2+y2-6x=0(y>0)与直线y=k(x+2)有公共点,则k的取值范围是(  )
A.k∈[-$\frac{3}{4}$,0)B.k∈(0,$\frac{4}{3}$]C.k∈(0,$\frac{3}{4}$]D.k∈[-$\frac{3}{4}$,$\frac{3}{4}$]

分析 曲线x2+y2-6x=0(y>0)是圆心在(3,0),半径为3的半圆,它与直线y=k(x+2)有公共点的充要条件是圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,由此能求出结果.

解答 解:∵曲线x2+y2-6x=0(y>0),
∴(x-3)2+y2=9(y>0)为圆心在(3,0),半径为3的半圆,
它与直线y=k(x+2)有公共点的充要条件是:
圆心(3,0)到直线y=k(x+2)的距离d≤3,且k>0,
∴$\frac{|3k-0+2k|}{\sqrt{{k}^{2}+1}}$≤3,且k>0,
解得0<k≤$\frac{3}{4}$.
故选:C.

点评 本题考查了直线与圆的位置关系的应用问题,也考查了转化思想的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0处的切线与直线x-2y=0垂直,则m=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合M={1,2,3,4},集合N={2,4}则M∩N=(  )
A.B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过点(0,-2)的直线交抛物线y2=16x于A(x1,y1),B(x2,y2)两点,且y12-y22=1,则△OAB(O为坐标原点)的面积为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知直线l:y=$\sqrt{3}$x+4,圆O:x2+y2=3,直线m∥l.
(1)若直线m与圆O相交,求直线m纵截距b的取值范围;
(2)设直线m与圆O相交于C、D两点,且A、B为直线l上两点,如图所示,若四边形ABCD是一个内角为60°的菱形,求直线m纵截距b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某算法的流程图如图所示,则输出的结果是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}{x=-1-\frac{3}{5}t}\\{y=2+\frac{4}{5}t}\end{array}\right.$与圆x2+y2=10相交于A、B两点,P点坐标P(-1,2).
(1)求|PA|•|PB|的值;
(2)求A、B中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=ax-lnx,a∈R.
(1)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(2)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$a=\frac{1}{ln10},b={(lge)^2},c=lg\sqrt{e}$,则有(  )
A.a>b>cB.c>a>bC.a>c>bD.c>b>a

查看答案和解析>>

同步练习册答案