精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0处的切线与直线x-2y=0垂直,则m=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

分析 根据直线垂直的等价条件求出切线斜率,然后求出函数的导数,利用导数的几何意义建立方程关系进行求解即可.

解答 解:直线x-2y=0的斜率k=$\frac{1}{2}$,
∵f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0处的切线与直线x-2y=0垂直,
∴f(x)的切线斜率k=-2,
函数的导数f′(x)=$\frac{2{e}^{2x+1}(2x+1)-(m+{e}^{2x+1})×2}{(2x+1)^{2}}$,
则f′(0)=$\frac{2e-2(m+e)}{1}$=-2m,
由f′(0)=-2,得-2m=-2,得m=1,
故选:B.

点评 本题主要考查导数的几何意义,根据直线相切的等价条件求出切线斜率以及根据导数的几何意义建立方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数y=f(x)在点(2,f(2))处的切线方程为y=4x-1,则 f(2)+f′(2)=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)当a>0时,讨论f(x)的单调区间;
(2)设g(x)=f(x)+2alnx,且g(x)有两个极值点为x1,x2,其中x1∈(0,e],求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对具有线性相关关系的变量x和y,测得一组数据如表:
x24568
y2040607080
若它们的回归直线方程为$\widehat{y}$=10.5x+a,则a的值为(  )
A.-0.5万元B.0.5万元C.1.5万元D.2.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在小于100的正整数中共有多少个数被7除余2,这些数的和是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知非空集合M满足:若x∈M,则$\frac{1}{1-x}$∈M,则当4∈M时,集合M的所有元素之积等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在极坐标系中,直线θ=$\frac{π}{4}$(ρ∈R)与曲线ρ2-2ρcosθ-4ρsinθ+4=0相交M,N两点,则|MN|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知锐角三角形的三边长分别为1,2,a,则a的取值范围是(  )
A.(3,5)B.($\sqrt{3},\sqrt{5}$)C.($\sqrt{3},5$)D.($\sqrt{5},3$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线x2+y2-6x=0(y>0)与直线y=k(x+2)有公共点,则k的取值范围是(  )
A.k∈[-$\frac{3}{4}$,0)B.k∈(0,$\frac{4}{3}$]C.k∈(0,$\frac{3}{4}$]D.k∈[-$\frac{3}{4}$,$\frac{3}{4}$]

查看答案和解析>>

同步练习册答案