精英家教网 > 高中数学 > 题目详情
10.在极坐标系中,直线θ=$\frac{π}{4}$(ρ∈R)与曲线ρ2-2ρcosθ-4ρsinθ+4=0相交M,N两点,则|MN|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 把直线θ=$\frac{π}{4}$(ρ∈R)代入曲线ρ2-2ρcosθ-4ρsinθ+4=0,化简解出即可得出.

解答 解:把直线θ=$\frac{π}{4}$(ρ∈R)代入曲线ρ2-2ρcosθ-4ρsinθ+4=0,可得:ρ2-2ρ$cos\frac{π}{4}$-4ρsin$\frac{π}{4}$+4=0,
化为:ρ2-3$\sqrt{2}$ρ+4=0,
∴ρ1=2$\sqrt{2}$,ρ2=$\sqrt{2}$.
则|MN|=$2\sqrt{2}-\sqrt{2}$=$\sqrt{2}$.
故选:A.

点评 本题考查了直线与圆相交弦长问题、极坐标的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.点P从(1,0)点出发,沿单位圆x2+y2=1逆时针方向运动$\frac{π}{3}$弧长到达Q点,则Q点坐标为(  )
A.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$B.$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$C.$(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$D.$(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知抛物线y2=2px(p>0)的焦点是双曲线$\frac{x^2}{5+p}$-$\frac{y^2}{7+p}$=1的一个焦点,则p的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{m+{e^{2x+1}}}}{2x+1}$在x=0处的切线与直线x-2y=0垂直,则m=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,且($\vec a$-$\vec b$)与$\vec a$垂直,则$\vec a$与$\vec b$的夹角是(  )
A.60°B.30°C.135°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,O为坐标原点,f(x)=$\overrightarrow{OA}$•$\overrightarrow{OC}$-(2m+$\frac{2}{3}$)•|$\overrightarrow{AB}$|;A、B、C三点满足满足$\overrightarrow{OC}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OB}$.
(Ⅰ)求证:A、B、C三点共线;
(Ⅱ)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤$\frac{π}{2}$ ),的最小值为-$\frac{3}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.下列语句的否定形式是什么?
①a>0;②a=0且b=2;③我们都是中国人;④我们都不是中国人;⑤我们至多一个是中国人;⑥我们至少5个是中国人;⑦我们班任意一个是中国人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合M={1,2,3,4},集合N={2,4}则M∩N=(  )
A.B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}{x=-1-\frac{3}{5}t}\\{y=2+\frac{4}{5}t}\end{array}\right.$与圆x2+y2=10相交于A、B两点,P点坐标P(-1,2).
(1)求|PA|•|PB|的值;
(2)求A、B中点的坐标.

查看答案和解析>>

同步练习册答案