| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 把直线θ=$\frac{π}{4}$(ρ∈R)代入曲线ρ2-2ρcosθ-4ρsinθ+4=0,化简解出即可得出.
解答 解:把直线θ=$\frac{π}{4}$(ρ∈R)代入曲线ρ2-2ρcosθ-4ρsinθ+4=0,可得:ρ2-2ρ$cos\frac{π}{4}$-4ρsin$\frac{π}{4}$+4=0,
化为:ρ2-3$\sqrt{2}$ρ+4=0,
∴ρ1=2$\sqrt{2}$,ρ2=$\sqrt{2}$.
则|MN|=$2\sqrt{2}-\sqrt{2}$=$\sqrt{2}$.
故选:A.
点评 本题考查了直线与圆相交弦长问题、极坐标的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2},\frac{{\sqrt{3}}}{2})$ | B. | $(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$ | C. | $(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$ | D. | $(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 30° | C. | 135° | D. | 45° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com