分析 根据抛物线和双曲线的焦点坐标公式,抛物线y2=2px的焦点为($\frac{p}{2}$,0)和双曲线的焦点($\sqrt{12+2p}$,0),可知$\sqrt{12+2p}$=$\frac{p}{2}$,即可求得p的值.
解答 解:由题意可知:抛物线y2=2px的焦点为($\frac{p}{2}$,0),
双曲线$\frac{x^2}{5+p}$-$\frac{y^2}{7+p}$=1,a2=5+p,b2=7+p,c2=a2+b2=12+2p,
∴双曲线的焦点($\sqrt{12+2p}$,0),
∴$\sqrt{12+2p}$=$\frac{p}{2}$,整理得:p2-8p-48=0,解得:p=12或p=-4(舍),
∴p=12,
故答案为:12.
点评 本题考查抛物线和双曲线的简单性质,考查双曲线的焦点坐标公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 20 | 40 | 60 | 70 | 80 |
| A. | -0.5万元 | B. | 0.5万元 | C. | 1.5万元 | D. | 2.5万元 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com