| A. | 60° | B. | 30° | C. | 135° | D. | 45° |
分析 设$\vec a$与$\vec b$的夹角为θ,利用两个向量的数量积的定义,两个向量垂直的性质,求得cosθ=$\frac{\sqrt{2}}{2}$,可得θ 的值.
解答 解:设$\vec a$与$\vec b$的夹角为θ,∵已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,且($\vec a$-$\vec b$)与$\vec a$垂直,则($\overrightarrow{a}-\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow{b}$=1-1•$\sqrt{2}$cosθ=0,
求得cosθ=$\frac{\sqrt{2}}{2}$,则θ=45°,
故选:D.
点评 本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $(0,\sqrt{2})$ | B. | $(1,\sqrt{2})$ | C. | $(\frac{{\sqrt{2}}}{2},1)$ | D. | $(\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.1588 | B. | 0.1587 | C. | 0.1586 | D. | 0.1585 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com