精英家教网 > 高中数学 > 题目详情
14.如图,△ABC内接于⊙O,弦AE交BC于D,已知AD2=BD•DC,∠ADC=60°,OD=1,OE⊥BC.
(1)求∠ODG;
 (2)求△ABC中BC边上的高.

分析 (1)推导出OD⊥AE,从而△ODE为直角三角形,由△DGE∽△ODE,能求出∠ODG.
(2)作AF⊥BC于F,连结OA,推导出$∠AOD=∠DOE=\frac{π}{3}$,由此能求出BC边上的高.

解答 解:(1)∵△ABC内接于⊙O,弦AE交BC于D,AD2=BD•DC,
∴D为AE的中点,OD⊥AE,
∴△ODE为直角三角形,
∵OE⊥BC,∴△DGE∽△ODE,
∴∠EDG=∠DOE,
又∠ADC=∠EDG(对顶角),
∴∠ODG=90°-60°=30°.
(2)作AF⊥BC于F,连结OA,
由(1)得$∠AOD=∠DOE=\frac{π}{3}$,
在Rt△AOD与Rt△ADF中,
AF=ADsin$\frac{π}{3}$=OEsin2$\frac{π}{3}$=$\frac{3}{2}$,
∴BC边上的高为$\frac{3}{2}$.

点评 本题考查角的大小的求法,考查边上的高的求法,是中档题,解题时要认真审题,注意相似三角形的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.圆柱的底面半径为r,其全面积是侧面积的$\frac{3}{2}$倍.O是圆柱中轴线的中点,若在圆柱内任取一点P,则使|PO|≤r的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,且($\vec a$-$\vec b$)与$\vec a$垂直,则$\vec a$与$\vec b$的夹角是(  )
A.60°B.30°C.135°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.下列语句的否定形式是什么?
①a>0;②a=0且b=2;③我们都是中国人;④我们都不是中国人;⑤我们至多一个是中国人;⑥我们至少5个是中国人;⑦我们班任意一个是中国人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{x,x≤0}\end{array}\right.$ 若f(x)≤2,则x的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合M={1,2,3,4},集合N={2,4}则M∩N=(  )
A.B.{1,3,5}C.{2,4}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点F(1,0),M,N是椭圆上关于x轴对称的两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知Q(2,0),若MF与QN相交于点P,证明:点P在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知直线l:y=$\sqrt{3}$x+4,圆O:x2+y2=3,直线m∥l.
(1)若直线m与圆O相交,求直线m纵截距b的取值范围;
(2)设直线m与圆O相交于C、D两点,且A、B为直线l上两点,如图所示,若四边形ABCD是一个内角为60°的菱形,求直线m纵截距b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设实数a,b均为区间[0,1]内的随机数,则关于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有实数解的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案