精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点F(1,0),M,N是椭圆上关于x轴对称的两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知Q(2,0),若MF与QN相交于点P,证明:点P在椭圆C上.

分析 (Ⅰ)由题意可知:列方程组,求得a和b的值,求得椭圆方程;
(Ⅱ)设M,N的坐标,求得直线MF和NQ的方程,联立解得P点坐标,将P点坐标代入椭圆方程,满足椭圆C的方程,即点P在椭圆C上.

解答 解:(Ⅰ)由已题意可知,得$\left\{\begin{array}{l}c=1\\ \frac{c}{a}=\frac{{\sqrt{2}}}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.$…(3分)
解得:$a=\sqrt{2}$,b=1,…(5分)
因此椭圆C的方程为:$\frac{x^2}{2}+{y^2}=1$.…(6分)
(Ⅱ)证明:根据题意可设M,N的坐标分别为(x0,y0),(x0,-y0)(y0≠0)则
直线MF的方程为$x=\frac{{{x_0}-1}}{y_0}y+1$,①
直线NQ的方程为$x=\frac{{2-{x_0}}}{y_0}y+2$.②…(8分)
联立①②解得$x=\frac{{3{x_0}-4}}{{2{x_0}-3}}$,$y=\frac{y_0}{{2{x_0}-3}}$,即$P(\frac{{3{x_0}-4}}{{2{x_0}-3}},\frac{y_0}{{2{x_0}-3}})$.…(11分)
由$\frac{{{x_0}^2}}{2}+{y_0}^2=1$,可得${y_0}^2=1-\frac{{{x_0}^2}}{2}$.
∵$\frac{1}{2}{(\frac{{3{x_0}-4}}{{2{x_0}-3}})^2}+{(\frac{y_0}{{2{x_0}-3}})^2}=\frac{{{{(3{x_0}-4)}^2}}}{{2{{(2{x_0}-3)}^2}}}+\frac{{2-{x_0}^2}}{{2{{(2{x_0}-3)}^2}}}$=$\frac{{8{x_0}^2-24{x_0}+18}}{{2{{(2{x_0}-3)}^2}}}=\frac{{2{{(2{x_0}-3)}^2}}}{{2{{(2{x_0}-3)}^2}}}=1$,
∴点P坐标满足椭圆C的方程,即点P在椭圆C上.…(14分)

点评 本题考查椭圆的标准方程及其简单性质,考查直线与椭圆的位置关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2-a2-$\sqrt{2}$bc=0.
(1)求角A的大小;
(2)若sin2B+sin2C=2sin2A,且a=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{\sqrt{x}}$的导函数为f'(x)=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,△ABC内接于⊙O,弦AE交BC于D,已知AD2=BD•DC,∠ADC=60°,OD=1,OE⊥BC.
(1)求∠ODG;
 (2)求△ABC中BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中错误的个数是
①命题“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;
③已知p:x2+2x-3>0,q:$\frac{1}{3-x}$>1,若命题(¬q)∧p为真命题,则x的取值范围是(-∞,-3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分条件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,半径为1,圆心角为$\frac{3π}{2}$的圆弧$\widehat{AB}$上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧$\widehat{AB}$上运动时,求$\overrightarrow{CE}$•$\overrightarrow{CD}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.y=$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$在[π,2π]上的最小值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X服从正态分布N(3,1),且P(2<X≤4)=0.6826,则P(X>4)=(  )
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合P={-1,0,1},$Q=\{x|\sqrt{x}<2\}$,则P∩Q=(  )
A.{-1,0,1}B.{0,1}C.{0}D.{1}

查看答案和解析>>

同步练习册答案