精英家教网 > 高中数学 > 题目详情
15.已知随机变量X服从正态分布N(3,1),且P(2<X≤4)=0.6826,则P(X>4)=(  )
A.0.1588B.0.1587C.0.1586D.0.1585

分析 根据随机变量ξ服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(X>4).

解答 解:P(3≤X≤4)=$\frac{1}{2}$P(2≤X≤4)=0.3413,
观察图得,P(X>4)=0.5-P(3≤X≤4)=0.5-0.3413=0.1587.
故选:B.

点评 本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知|$\vec a$|=1,|$\vec b$|=$\sqrt{2}$,且($\vec a$-$\vec b$)与$\vec a$垂直,则$\vec a$与$\vec b$的夹角是(  )
A.60°B.30°C.135°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点F(1,0),M,N是椭圆上关于x轴对称的两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知Q(2,0),若MF与QN相交于点P,证明:点P在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知直线l:y=$\sqrt{3}$x+4,圆O:x2+y2=3,直线m∥l.
(1)若直线m与圆O相交,求直线m纵截距b的取值范围;
(2)设直线m与圆O相交于C、D两点,且A、B为直线l上两点,如图所示,若四边形ABCD是一个内角为60°的菱形,求直线m纵截距b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{4}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为(  )
A.y=±$\frac{4\sqrt{15}}{15}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{15}}{4}$D.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}{x=-1-\frac{3}{5}t}\\{y=2+\frac{4}{5}t}\end{array}\right.$与圆x2+y2=10相交于A、B两点,P点坐标P(-1,2).
(1)求|PA|•|PB|的值;
(2)求A、B中点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.经市场调查,某商品在最近90天内的销售量(单位:件)和价格(单位:元)均为时间t(单位:天)的函数,且销售量近似地满足f(t)=$\left\{\begin{array}{l}{\frac{1}{4}t+10,1≤t≤40,t∈{N}^{+}}\\{t-20,40<t≤90,t∈{N}^{+}}\end{array}\right.$,价格近似地满足g(t)=$\left\{\begin{array}{l}{-10t+630,1≤t≤40,t∈{N}^{+}}\\{-\frac{1}{10}{t}^{2}+10t-10,40<t≤90,t∈{N}^{+}}\end{array}\right.$.
(1)写出该商品的日销售额S(销售量与价格之积)与时间t的函数关系;
(2)求该商品的日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设实数a,b均为区间[0,1]内的随机数,则关于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有实数解的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lnx-\frac{m}{2}{x^2}+x(m∈R)$.
(Ⅰ)当m>0时,若$f(x)≤mx-\frac{1}{2}$恒成立,求的取值范围.
(Ⅱ)当m=-1时,若f(x1)+f(x2)=0,求证:${x_1}+{x_2}≥\sqrt{3}-1$.

查看答案和解析>>

同步练习册答案