精英家教网 > 高中数学 > 题目详情
10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{4}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为(  )
A.y=±$\frac{4\sqrt{15}}{15}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{15}}{4}$D.y=±$\frac{\sqrt{3}}{3}$x

分析 运用椭圆的离心率公式可得a,b的关系,再由双曲线的渐近线方程,即可得到.

解答 解:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{4}$,
则$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{1}{4}$,
即有$\frac{b}{a}$=$\frac{\sqrt{15}}{4}$,
则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=$±\frac{b}{a}$x,
即有y=±$\frac{\sqrt{15}}{4}$x.
故选:C.

点评 本题考查椭圆和双曲线的方程和性质,考查渐近线方程和离心率公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知下列命题:
①若$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=0
②|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$
③△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则三角形的面积S=$\frac{1}{2}$$\sqrt{(|\overrightarrow{a}||\overrightarrow{b}|)^{2}-(\overrightarrow{a}•\overrightarrow{b})^{2}}$
④△ABC中,G为三角形所在平面内一点,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,则G为三角形的重心,
其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法中错误的个数是
①命题“?x1,x2∈M,x1≠x2,有[f(x1)-f(x2)](x2-x1)>0”的否定是“?x1,x2∉M,x1≠x2,有[f(x1)-f(x2)](x2-x1)≤0”;
②若一个命题的逆命题为真命题,则它的否命题也一定为真命题;
③已知p:x2+2x-3>0,q:$\frac{1}{3-x}$>1,若命题(¬q)∧p为真命题,则x的取值范围是(-∞,-3)∪(1,2)∪[3,+∞);
④“x≠3”是“|x|≠3”成立的充分条件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.y=$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$在[π,2π]上的最小值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-1,g(x)=|x-1|.
(I)若a=1,求函数y=|f(x)|-g(x)的零点;
(II)若a<0时,求G(x)=f(x)+g(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X服从正态分布N(3,1),且P(2<X≤4)=0.6826,则P(X>4)=(  )
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{2\sqrt{3},x>1}\\{4sin(πx-\frac{π}{3}),0≤x≤1}\end{array}\right.$,则f(x)的最小值是(  )
A.-2$\sqrt{3}$B.2$\sqrt{3}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.我们把形如$y=\frac{b}{|x|-a}\;(a>0,b>0)$的函数称为“莫言函数”,其图象与y轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心且与“莫言函数”的图象有公共点的圆称为“莫言圆”.则当a=b=1时,“莫言点”的坐标是(0,1);且“莫言圆”的面积的最小值是3π.

查看答案和解析>>

同步练习册答案