精英家教网 > 高中数学 > 题目详情
12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

分析 设正△ABC的中心为O1,连结O1O、O1C、O1D、OD.根据球的截面圆性质、正三角形的性质与勾股定理,结合题中数据算出OD=$\frac{\sqrt{7}}{2}$.而经过点D的球O的截面,当截面与OD垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.

解答 解:设正△ABC的中心为O1,连结O1O、O1C、O1D、OD,
∵O1是正△ABC的中心,A、B、C三点都在球面上,
∴O1O⊥平面ABC,结合O1C?平面ABC,可得O1O⊥O1C,
∵球的半径R=2,球心O到平面ABC的距离为1,得O1O=1,
∴Rt△O1OC中,O1C=$\sqrt{3}$.
又∵D为BC的中点,∴Rt△O1DC中,O1D=$\frac{1}{2}$O1C=$\frac{\sqrt{3}}{2}$.
∴Rt△OO1D中,OD=$\frac{\sqrt{7}}{2}$.
∵过D作球O的截面,当截面与OD垂直时,截面圆的半径最小,
∴当截面与OD垂直时,截面圆的面积有最小值.
此时截面圆的半径r=$\frac{3}{2}$,可得截面面积为S=πr2=$\frac{9π}{4}$.
故答案为:$\frac{9π}{4}$.

点评 本题已知球的内接正三角形与球心的距离,求经过正三角形中点的最小截面圆的面积.着重考查了勾股定理、球的截面圆性质与正三角形的性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{x,x≤0}\end{array}\right.$ 若f(x)≤2,则x的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{4}$,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为(  )
A.y=±$\frac{4\sqrt{15}}{15}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{15}}{4}$D.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.经市场调查,某商品在最近90天内的销售量(单位:件)和价格(单位:元)均为时间t(单位:天)的函数,且销售量近似地满足f(t)=$\left\{\begin{array}{l}{\frac{1}{4}t+10,1≤t≤40,t∈{N}^{+}}\\{t-20,40<t≤90,t∈{N}^{+}}\end{array}\right.$,价格近似地满足g(t)=$\left\{\begin{array}{l}{-10t+630,1≤t≤40,t∈{N}^{+}}\\{-\frac{1}{10}{t}^{2}+10t-10,40<t≤90,t∈{N}^{+}}\end{array}\right.$.
(1)写出该商品的日销售额S(销售量与价格之积)与时间t的函数关系;
(2)求该商品的日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-ax-alnx(a∈R).$g(x)=-{x^3}+\frac{5}{2}{x^2}-4x+\frac{3}{2}$
(1)当a=1时,求证:?x1,x2∈(1,+∞),均有f(x1)≥g(x2
(2)当x∈[1,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设实数a,b均为区间[0,1]内的随机数,则关于x的不等式$b{x^2}+ax+\frac{1}{4}<0$有实数解的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=2px(p>0)上有两点A(x1,y1),B(x2,y2
(1)当抛物线的准线方程为$x=-\frac{1}{4}$时,作正方形ABCD使得边CD直线方程为y=x+4,求正方形的边长;
(2)抛物线上一定点Px0,y0)(y0>0),当PA与PB的斜率存在且倾斜角互补时,求证直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\vec a=({sinθ,-2})$,$\vec b=({1,cosθ})$互相垂直,其中$θ∈(0,\frac{π}{2})$;
(1)求tan2θ的值;
(2)若$sin({θ-φ})=\frac{{\sqrt{10}}}{10},0<φ<\frac{π}{2}$,求cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算(1)已知$0<x<\frac{π}{2}$,化简:$lg(cosxtanx+1-2{sin^2}\frac{x}{2})+lg[\sqrt{2}cos(x-\frac{π}{4})]-lg(1+sin2x)$;
(2)已知0<x<1,且x+x-1=3,求${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$的值.

查看答案和解析>>

同步练习册答案