精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x2-ax-alnx(a∈R).$g(x)=-{x^3}+\frac{5}{2}{x^2}-4x+\frac{3}{2}$
(1)当a=1时,求证:?x1,x2∈(1,+∞),均有f(x1)≥g(x2
(2)当x∈[1,+∞)时,f(x)≥0恒成立,求a的取值范围.

分析 (1)a=1时,$f'(x)=2x-1-\frac{1}{x}=\frac{{2{x^2}-x-1}}{x}=\frac{(2x+1)(x-1)}{x}$,f(x)min=f(1)=0,g(x)max=g(1)<0,由此能证明当a=1时,?x1,x2∈(1,+∞),均有f(x1)≥g(x2).
(2)由x∈[1,+∞)知,x+ln x>0,f(x)≥0恒成立等价于a≤$\frac{x2}{x+lnx}$在x∈[1,+∞)时恒成立,令h(x)=$\frac{x2}{x+lnx}$,x∈[1,+∞),由此利用导数性质能求出a的取值范围.

解答 证明:(1)a=1时,f(x)=x2-x-ln x,
$f'(x)=2x-1-\frac{1}{x}=\frac{{2{x^2}-x-1}}{x}=\frac{(2x+1)(x-1)}{x}$,
f(x)在(1,+∞)上是增函数,f(x)min=f(1)=0,
g'(x)=-3x2+5x-4<0,
∴g(x)在(1,+∞)上是减函数,g(x)max=g(1)<0
∴当a=1时,?x1,x2∈(1,+∞),均有f(x1)≥g(x2)…(5分)
解:(2)由x∈[1,+∞)知,x+ln x>0,…(6分)
∴f(x)≥0恒成立等价于a≤$\frac{x2}{x+lnx}$在x∈[1,+∞)时恒成立,…(7分)
令h(x)=$\frac{x2}{x+lnx}$,x∈[1,+∞),
有h′(x)=$\frac{x(x-1+2lnx)}{(x+lnx)2}$>0,…(8分)
x∈[1,+∞),h'(x)>0,h(x)单调递增,
∴x∈[1,+∞)h(x)≥h(1)=1,∴a≤1.
∴a的取值范围是(-∞,1].…(12分)

点评 本题考查不等式的证明,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设直线m,n是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是(  )
A.m∥α,n∥β,m∥nB.m∥α,n⊥β,m∥nC.m⊥α,n∥β,m⊥nD.m⊥α,n⊥β,m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-1,g(x)=|x-1|.
(I)若a=1,求函数y=|f(x)|-g(x)的零点;
(II)若a<0时,求G(x)=f(x)+g(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{2\sqrt{3},x>1}\\{4sin(πx-\frac{π}{3}),0≤x≤1}\end{array}\right.$,则f(x)的最小值是(  )
A.-2$\sqrt{3}$B.2$\sqrt{3}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{x}+alnx$,g(x)=f(x)+ax-lnx.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)是否存在常数t,使g(x)≥t对任意的a∈[1,e]和任意的x∈(0,+∞)都成立,若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}的前n项和记为Sn,满足2n=$\sqrt{{S}_{n}+n}$,则数列{an}的公差d=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某程序框图如图所示,当输出y值为-8时,则输出x的值为(  )
A.64B.32C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为M、N,则M-N的值为20.

查看答案和解析>>

同步练习册答案