精英家教网 > 高中数学 > 题目详情
4.设直线m,n是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是(  )
A.m∥α,n∥β,m∥nB.m∥α,n⊥β,m∥nC.m⊥α,n∥β,m⊥nD.m⊥α,n⊥β,m∥n

分析 正确命题加以论证,不正确命题举出反例,即可得出结论.

解答 解:A:若m∥α,n∥β,m∥n,则α,β平行或相交,故A不正确.
B:m∥α,n⊥β,m∥n可得α⊥β,所以B不正确.
C:若m⊥α,n∥β,m⊥n可得α,β相交,所以C不正确.
D:若m⊥α,m∥n,可得n⊥α,由于n⊥β可得α∥β,所以D正确.
故选:D.

点评 本题考查面面位置关系中面面平行的条件,示例典型,能起到训练答题者加深理解面面平行判定定理的目的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知定义域为R的偶函数,f(x)满足对任意的x∈R,有f(x+2)=f(x)-f(1),且当,x∈[2,3]时,f(x)=-(x-2)2+1.若函数y=f(x)-a(x-$\frac{11}{12}$)在(0,+∞)上恰有三个零点,则实数a的取值范围是($\frac{1}{3}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法错误的是(  )
A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系
B.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
C.线性回归方程对应的直线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点
D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{(x-a)lnx}{x}$,其中a∈[-e2,+∞),e=2.71828…为自然对数的底数.
(1)讨论函数f(x)的单调性;
(2)若a=1,证明:当x1≠x2,且f(x1)=f(x2)时,x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.非空数集A如果满足:①0∉A;②若对?x∈A,有$\frac{1}{x}$∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0}; ②{x|x2-4x+1<0};③{y|y=$\left\{\begin{array}{l}{2x+\frac{2}{5},x∈[0,1)}\\{x+\frac{1}{x},x∈[1,2]}\end{array}\right.$}.
其中“互倒集”的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x>0}\\{x,x≤0}\end{array}\right.$ 若f(x)≤2,则x的取值范围是(-∞,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)是定义在R上的偶函数,且当x>0时,不等式2f(x)+2x•f′(x)<0成立,若a=30.2f(30.2),b=(logπ2)f(logπ2),c=(log2$\frac{1}{4}$)f(log2$\frac{1}{4}$),则a,b,c之间的大小关系为(  )
A.a>c>bB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+t,x<0}\\{x+lnx,x>0}\end{array}\right.$,其中t是实数.设A,B为该函数图象上的两点,横坐标分别为x1,x2,且x1<x2
(1)若x2<0,函数f(x)的图象在点A,B处的切线互相垂直,求x1-2x2的最大值;
(2)若函数f(x)的图象在点A,B处的切线重合,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-ax-alnx(a∈R).$g(x)=-{x^3}+\frac{5}{2}{x^2}-4x+\frac{3}{2}$
(1)当a=1时,求证:?x1,x2∈(1,+∞),均有f(x1)≥g(x2
(2)当x∈[1,+∞)时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案