精英家教网 > 高中数学 > 题目详情
2.计算(1)已知$0<x<\frac{π}{2}$,化简:$lg(cosxtanx+1-2{sin^2}\frac{x}{2})+lg[\sqrt{2}cos(x-\frac{π}{4})]-lg(1+sin2x)$;
(2)已知0<x<1,且x+x-1=3,求${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$的值.

分析 (1)根据二倍角公式及两角差的正弦公式将原式转化成lg(sinx+cosx)+lg(sinx+cosx)-lg(1+2sin2x),利用对数函数的运算性质及同角三角函数的基本关系,即可求得答案.
(2)(${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$)2=x+x-1-2=3-2=1,由0<x<1,${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$<0,即可求得${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$的值.

解答 解:(1)$lg(cosxtanx+1-2{sin^2}\frac{x}{2})+lg[\sqrt{2}cos(x-\frac{π}{4})]-lg(1+sin2x)$,
=lg(cosx•$\frac{sinx}{cocx}$+1-2sin2$\frac{x}{2}$)+lg($\sqrt{2}$cosxcos$\frac{π}{4}$+$\sqrt{2}$sinxsin$\frac{π}{4}$)-lg(1+2sin2x),
=lg(sinx+cosx)+lg(sinx+cosx)-lg(1+2sin2x),
=lg(sinx+cosx)2-lg(1+2sin2x),
=lg(1+2sin2x)-lg(1+2sin2x),
=0,
(2)由x+x-1=3,
(${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$)2=x+x-1-2=3-2=1,
由0<x<1,
∴${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$=$\sqrt{x}$-$\frac{1}{\sqrt{x}}$=$\frac{x-1}{\sqrt{x}}$<0,
∴${x^{\frac{1}{2}}}-{x^{-\frac{1}{2}}}$=-1

点评 本题考查三角恒等变换公式的应用,考查分数指数幂的运算法则,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.我们把形如$y=\frac{b}{|x|-a}\;(a>0,b>0)$的函数称为“莫言函数”,其图象与y轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心且与“莫言函数”的图象有公共点的圆称为“莫言圆”.则当a=b=1时,“莫言点”的坐标是(0,1);且“莫言圆”的面积的最小值是3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x+1$.
(Ⅰ)求函数f(x)在x=0处的切线方程;
(Ⅱ)求函数f(x)在区间[-2,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为M、N,则M-N的值为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是(  )
A.y=x3B.y=-|x|C.y=-x2+1D.y=2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-ax+b,经过曲线y=f(x)外的一点(1,0)作该曲线的切线恰有两条.
(1)求f(x)的极小值(用a表示);
(2)若存在x0∈(0,+∞),使得$f({x_0})>{x_0}•{e^{x_0}}+a$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆$C:\frac{x^2}{a^2}+{y^2}=1(a>1)$的上顶点为A,右焦点为F,直线AF与圆M:x2+y2-6x-2y+7=0相切.
(1)求椭圆C的方程;
(2)若不过点A的动直线l与椭圆相交于P,Q两点,且$\overrightarrow{AP}•\overrightarrow{AQ}=0$,试问直线l能否过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,若sin2B=sinA•sinC,则角B的取值范围为$(0,\frac{π}{3}]$.

查看答案和解析>>

同步练习册答案