精英家教网 > 高中数学 > 题目详情
7.经市场调查,某商品在最近90天内的销售量(单位:件)和价格(单位:元)均为时间t(单位:天)的函数,且销售量近似地满足f(t)=$\left\{\begin{array}{l}{\frac{1}{4}t+10,1≤t≤40,t∈{N}^{+}}\\{t-20,40<t≤90,t∈{N}^{+}}\end{array}\right.$,价格近似地满足g(t)=$\left\{\begin{array}{l}{-10t+630,1≤t≤40,t∈{N}^{+}}\\{-\frac{1}{10}{t}^{2}+10t-10,40<t≤90,t∈{N}^{+}}\end{array}\right.$.
(1)写出该商品的日销售额S(销售量与价格之积)与时间t的函数关系;
(2)求该商品的日销售额S的最大值.

分析 (1)根据销售额等于销售量乘以售价得S与t的函数关系式,此关系式为分段函数;
(2)根据分段函数的最大值分段求解的原则,求出分段函数的最大值即可.

解答 解:(1)根据题意,得S=$\left\{\begin{array}{l}{(\frac{1}{4}t+10)(-10t+630),1≤t≤40,t∈{N}_{+}}\\{(t-20)(-\frac{1}{10}{t}^{2}+10t-10).40<t≤90,t∈{N}_{+}}\end{array}\right.$…(5分)
(2)①当1≤t≤40,t∈N时,S=-$\frac{5}{2}$(t-$\frac{23}{2}$)2+$\frac{53045}{8}$,
所以当t=11或12时,S的最大值为$\frac{53045}{8}$;    …(7分)
②当40<t≤90,t∈N时,S=-$\frac{1}{10}{t}^{3}+12{t}^{2}-210t+200$,
S′=-$\frac{3}{10}$(t-10((t-70)
所以10<t<70,S′>0,70<t<90,S′<0
所以当t=70时,S的最大值为2000.
因为$\frac{53045}{8}$>2000,
所以当t=11或12时,日销售额S有最大值$\frac{53045}{8}$.    …(10分)

点评 考查学生根据实际问题选择函数类型的能力.理解函数的最值及其几何意义的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{1}{\sqrt{x}}$的导函数为f'(x)=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.y=$\sqrt{3}$sin$\frac{x}{2}$+cos$\frac{x}{2}$在[π,2π]上的最小值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量X服从正态分布N(3,1),且P(2<X≤4)=0.6826,则P(X>4)=(  )
A.0.1588B.0.1587C.0.1586D.0.1585

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{2\sqrt{3},x>1}\\{4sin(πx-\frac{π}{3}),0≤x≤1}\end{array}\right.$,则f(x)的最小值是(  )
A.-2$\sqrt{3}$B.2$\sqrt{3}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,B=$\frac{π}{3}$,且(cosA-3cosC)b=(3c-a)cosB.
(Ⅰ)求tanA的值;
(Ⅱ)若b=$\sqrt{14}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正三角形ABC的三个顶点都在球心为O、半径为2的球面上,且三棱锥O-ABC的高为1,点D是线段BC的中点,过点D作球O的截面,则截面面积的最小值为$\frac{9π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合P={-1,0,1},$Q=\{x|\sqrt{x}<2\}$,则P∩Q=(  )
A.{-1,0,1}B.{0,1}C.{0}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}-3x+1$.
(Ⅰ)求函数f(x)在x=0处的切线方程;
(Ⅱ)求函数f(x)在区间[-2,5]上的最小值.

查看答案和解析>>

同步练习册答案