精英家教网 > 高中数学 > 题目详情
9.已知三被锥S-ABC的体积为$\frac{4\sqrt{5}}{3}$,底面△ABC是边长为2的正三角形,且所有頂点都在直径为SC的球面上.则此球的半径为2$\sqrt{2}$.

分析 设球心为O,球的半径为R,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,作SD⊥平面ABC交CO1的延长线与D,用半径表示出OO1、高SD,利用V三棱锥S-ABC=$\frac{4\sqrt{5}}{3}$求出R的值.

解答 解:设球心为O,球的半径为R,
过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,
作SD⊥平面ABC交CO1的延长线与D,如图所示;
∵△ABC是正三角形,
∴CD=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,O1C=$\frac{2}{3}$CD=$\frac{2\sqrt{3}}{3}$,
∴OO1=$\sqrt{{R}^{2}-\frac{4}{3}}$,
∴高SD=2OO1=2$\sqrt{{R}^{2}-\frac{4}{3}}$;
又△ABC是边长为2的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$•22=$\sqrt{3}$,
∴V三棱锥S-ABC=$\frac{1}{3}$•$\sqrt{3}$•2$\sqrt{{R}^{2}-\frac{4}{3}}$=$\frac{4\sqrt{5}}{3}$,
解得R=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了棱锥的体积,球内接多面体的应用问题,解题的关键是确定点S到平面ABC的距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.平面内给定三个向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求满足$\overrightarrow{a}$=m$\overrightarrow{b}$+n$\overrightarrow{c}$的实数m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知-π<x<0,sinx+cosx=$\frac{1}{5}$,
(1)求sinx-cosx的值;
(2)求$\frac{{2{{sin}^2}x+2sinx•cosx}}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据条件求解下列问题
(1)函数f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,若f(x)=3,求x;
(2)求函数的值域:y=$\frac{3x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{x}^{2}}{x-1}$(x>1)的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)的定义域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a为小于0的常数)设x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,则a的范围是(-∞,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双语测试中,至少有一科得A才能通过测试,已知某同学语文得A的概率为0.8,英语得A的概率为0.9,两者互不影响,则该同学通过测试的概率为0.97.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知观测所得数据如表:
未感冒感冒合计
用某种药252248500
未用某种药224276500
合计4765241000
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,
K2=$\frac{1000×(252×276-224×248)^{2}}{500×500×476×524}$≈3.143.
则有90%的把握认为用某种药与患感冒有关系.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率.

查看答案和解析>>

同步练习册答案