¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
3
2
£¬xÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ³¤°ëÖ᳤£®
£¨¢ñ£©ÇóC1£¬C2µÄ·½³Ì£»
£¨¢ò£©ÉèC2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔ­µãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA¡¢B£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓÚD£¬E£®
£¨i£©Ö¤Ã÷£ºMD¡ÍME£»
£¨ii£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃ
S1
S2
=
17
32
£¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÀëÐÄÂʵõ½Ò»¸ö¹ØÓÚ²ÎÊýµÄ·½³Ì£¬ÔÙÀûÓÃxÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ³¤°ëÖ᳤µÃÁíÒ»¸ö·½³Ì£¬Á½¸ö·½³ÌÁªÁ¢¼´¿ÉÇó³ö²ÎÊý½ø¶øÇó³öC1£¬C2µÄ·½³Ì£»
£¨¢ò£©£¨i£©°ÑÖ±ÏßlµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃ¹ØÓÚµãA¡¢B×ø±êµÄµÈÁ¿¹Øϵ£¬ÔÙ´úÈëÇó³ökMA•kMB=-1£¬¼´¿ÉÖ¤Ã÷£ºMD¡ÍME£»
£¨ii£©ÏÈ°ÑÖ±ÏßMAµÄ·½³ÌÓëÅ×ÎïÏß·½³ÌÁªÁ¢¿ÉµÃµãAµÄ×ø±ê£¬ÔÙÀûÓÃÏÒ³¤¹«Ê½Çó³ö|MA|£¬Í¬ÑùµÄ·½·¨Çó³ö|MB|½ø¶øÇó³öS1£¬Í¬Àí¿ÉÇóS2£®ÔÙ´úÈëÒÑÖª¾Í¿ÉÖªµÀÊÇ·ñ´æÔÚÖ±ÏßlÂú×ãÌâÖÐÌõ¼þÁË£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâµÃe=
c
a
=
3
2
£¬´Ó¶øa=2b£¬ÓÖ2
b
=a£¬½âµÃa=2£¬b=1£¬
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
x2
4
+y2=1
£¬y=x2-1£®
£¨¢ò£©£¨i£©ÓÉÌâµÃ£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£¬
ÓÉ
y=kx
y=x2-1
µÃx2-kx-1=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
ËùÒÔkMA•kMB=
y1+1
x1
y2+1
x2
=
(kx1+1)(kx2+1)
x1x2
=
k2x1x2+k(x1+x2)+1
x1x2
=
-k2+k2+1
-1
=-1£®
¹ÊMA¡ÍMB£¬¼´MD¡ÍME£®
£¨ii£©ÉèÖ±ÏßMAµÄбÂÊΪk1£¬ÔòÖ±ÏßMAµÄ·½³ÌΪy=k1x-1£®
ÓÉ
y=k1x-1
y=x2-1
£¬½âµÃ
x=0
y=-1
»ò
x=k1
y=k12-1
£®
ÔòµãAµÄ×ø±êΪ£¨k1£¬k12-1£©£®
ÓÖÖ±ÏßMBµÄбÂÊΪ-
1
k1
£¬Í¬Àí¿ÉµÃµãBµÄ×ø±êΪ£¨-
1
k1
£¬
1
k12
-1£©£®
ÓÚÊÇs1=
1
2
|MA|•|MB|=
1
2
1+k12
•|k1|•
1+
1
k12
•|-
1
k1
|=
1+k12
2|k1|
£®
ÓÉ
y=k1x-1
x2+4y2-4=0
µÃ£¨1+4k12£©x2-8k1x=0£®
½âµÃ
x=0
y=-1
»ò£¬
x=
8k1
1+4k12
y=
4k12-1
1+4k12
£¬ÔòµãDµÄ×ø±êΪ£¨
8k1
1+4k12
£¬
4k12-1
1+4k12
£©£®
ÓÖÖ±ÏßMEµÄбÂÊΪ-
1
k1
£®Í¬Àí¿ÉµÃµãEµÄ×ø±êΪ£¨
-8k1
4+k12
£¬
4-k12
4+k12
£©£®
ÓÚÊÇs2=
1
2
|MD|•|ME|=
32(1+k12)•|k1|
(1+4k12)(k12+4)
£®
¹Ê
s1
s2
=
1
64
(4k12+
4
k12
+17)
=
17
32
£¬½âµÃk12=4»òk12=
1
4
£®
ÓÖÓɵãA£¬BµÄ×ø±êµÃ£¬k=
k12-
1
k12
k1+
1
k1
=k1-
1
k1
£®ËùÒÔk=¡À
3
2
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïß´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³ÌΪy=
3
2
xºÍy=-
3
2
x£®
µãÆÀ£º±¾ÌâÊǶÔÍÖÔ²ÓëÅ×ÎïÏßÒÔ¼°Ö±ÏßÓëÅ×ÎïÏߺÍÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÎÊÌâµÄ¿¼²é£®ÊÇÒ»µÀÕûÀí¹ý³ÌºÜÂé·³µÄÌ⣬ÐèÒªÒªÈÏÕ棬ϸÖµÄ̬¶È²ÅÄÜ°ÑÌâÄ¿×÷ºÃ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Å×ÎïÏßC1£ºx2=2py£¨p£¾0£©µÄ½¹µãΪF£¬ÍÖÔ²C2£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=
3
2
£¬C1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪP£¨
3
£¬
1
2
£©
£¨1£©ÇóÅ×ÎïÏßC1¼°ÍÖÔ²C2µÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx+t£¨k¡Ù0£¬t£¾0£©ÓëÍÖÔ²C2½»ÓÚ²»Í¬Á½µãA¡¢B£¬µãMÂú×ã
AM
+
BM
=
0
£¬Ö±ÏßFMµÄбÂÊΪk1£¬ÊÔÖ¤Ã÷k•k1£¾
-1
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÑîÆÖÇø¶þÄ££©Èçͼ£¬ÍÖÔ²C1£º
x2
4
+y2=1£¬xÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ³¤°ëÖ᳤£®
£¨1£©ÇóʵÊýbµÄÖµ£»
£¨2£©ÉèC2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔ­µãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA¡¢B£¬Ö±ÏßMA¡¢MB·Ö±ðÓëC1ÏཻÓëD¡¢E£®
¢ÙÖ¤Ã÷£ºMD•ME=0£»
¢Ú¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£®Èô
S1
S2
=¦Ë£¬Çó¦ËµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ¹ýÅ×ÎïÏßC1£ºx2=4yµÄ¶Ô³ÆÖáÉÏÒ»µãP£¨0£¬m£©£¨m£¾0£©×÷Ö±ÏßlÓëÅ×ÎïÏß½»ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬µãQÊÇP¹ØÓÚÔ­µãµÄ¶Ô³Æµã£¬ÒÔP£¬QΪ½¹µãµÄÍÖԲΪC2£®
£¨1£©ÇóÖ¤£ºx1x2Ϊ¶¨Öµ£»
£¨2£©ÈôlµÄ·½³ÌΪx-2y+4=0£¬ÇÒC1£¬C2ÒÔ¼°Ö±ÏßlÓй«¹²µã£¬ÇóC2µÄ·½³Ì£»
£¨3£©Éè
AP
=¦Ë
PB
£¬Èô
QP
¡Í(
QA
-¦Ì
QB
)
£¬ÇóÖ¤£º¦Ë=¦Ì

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÍÖÔ²C1£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©ºÍÔ²C2£ºx2+y2=b2£¬ÒÑÖªÔ²C2½«ÍÖÔ²C1µÄ³¤ÖáÈýµÈ·Ö£¬ÍÖÔ²C1ÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ
2
4
£¬ÍÖÔ²C1µÄ϶¥µãΪE£¬¹ý×ø±êÔ­µãOÇÒÓë×ø±êÖá²»ÖغϵÄÈÎÒâÖ±ÏßlÓëÔ²C2ÏཻÓÚµãA¡¢B£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßEA¡¢EB·Ö±ðÓëÍÖÔ²C1ÏཻÓÚÁíÒ»¸ö½»µãΪµãP¡¢M£®
¢ÙÇóÖ¤£ºÖ±ÏßMP¾­¹ýÒ»¶¨µã£»
¢ÚÊÔÎÊ£ºÊÇ·ñ´æÔÚÒÔ£¨m£¬0£©ÎªÔ²ÐÄ£¬
3
2
5
Ϊ°ë¾¶µÄÔ²G£¬Ê¹µÃÖ±ÏßPMºÍÖ±ÏßAB¶¼ÓëÔ²GÏཻ£¿Èô´æÔÚ£¬ÇëÇó³öËùÓÐmµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸