精英家教网 > 高中数学 > 题目详情

已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是(  )

 

A.

(0,

B.

,1)

C.

(1,2)

D.

(2,3)

考点:

根的存在性及根的个数判断;对数函数图象与性质的综合应用.

专题:

计算题.

分析:

根据题意,由单调函数的性质,可得f(x)﹣log2x为定值,可以设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,对其求导可得f′(x);将f(x)与f′(x)代入f(x)﹣f′(x)=2,变形化简可得log2x﹣=0,令h(x)=log2x﹣,由二分法分析可得h(x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.

解答:

解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,

又由f(x)是定义在(0,+∞)上的单调函数,

则f(x)﹣log2x为定值,

设t=f(x)﹣log2x,则f(x)=log2x+t,

又由f(t)=3,即log2t+t=3,

解可得,t=2;

则f(x)=log2x+2,f′(x)=

将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,

可得log2x+2﹣=2,

即log2x﹣=0,

令h(x)=log2x﹣

分析易得h(1)=<0,h(2)=1﹣>0,

则h(x)=log2x﹣的零点在(1,2)之间,

则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,

故选C.

点评:

本题考查二分法求函数的零点与函数零点与方程根的关系的应用,关键点和难点是求出f(x)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案