精英家教网 > 高中数学 > 题目详情

已知关于x的方程x2+2ax+b=0,其中,,b∈[0,2].

(1)求方程有实根的概率;

(2)若a∈Z,b∈Z,求方程有实根的概率.

考点:

几何概型;古典概型及其概率计算公式.

专题:

概率与统计.

分析:

根据题意,由一元二次方程的性质,可得x2+2ax+b=0有实根的充要条件为b≤a2

(1)由题意分析可得,这是几何概型,将表示为平面区域,进而可得其中满足b≤a2的区域的面积,由几何概型公式,计算可得答案.

(2)由题意分析可得,这是古典概型,由a、b分别从{﹣1,0,1},{0,1,2}中任取的数字,易得一共可以得到9个不同方程;可得满足b≤a2的全部情况数目,结合古典概型公式,计算可得答案.

解答:

解:方程x2+2ax+b=0有实根⇔△≥0⇔4a2﹣4b≥0⇔b≤a2

(1)点(a,b)所构成的区域为

面积SΩ=

设“方程有实根”为事件A,所对应的区域为

其面积

这是一个几何概型,所以

(2)因为a∈Z,b∈Z,所以(a,b)的所有可能取值有9个,分别是:(﹣1,0),(0,0),(1,0),(﹣1,1),(0,1),(1,1),(﹣1,2),(0,2),(1,2),

其中,满足△≥0即b≤a2的有5个:(﹣1,0),(0,0),(1,0),(﹣1,1),(1,1).

设“方程有实根”为事件B,这是一个古典概型,所以

答:(1)所求概率为;(2)所求概率为

点评:

本题考查几何概型和古典概型,放在一起的目的是把两种概型加以比较,注意两者的不同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程|x2-6x|=a(a>0)的解集为P,则P中所有元素的和可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-2mx+m-3=0的两个实数根x1,x2满足x1∈(-1,0),x2∈(3,+∞),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2-(1-i)x+m+2i=0有实根,则m=
-6
-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,则
2a+3b
3a
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+2px-(q2-2)=0(p,q∈R)无实根,则p+q的取值范围是
(-2,2)
(-2,2)

查看答案和解析>>

同步练习册答案