精英家教网 > 高中数学 > 题目详情

【题目】已知曲线上的点到点的距离比到直线的距离小为坐标原点.

1)过点且倾斜角为的直线与曲线交于两点,求的面积;

2)设为曲线上任意一点,点,是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

【答案】1;(2)直线存在,其方程为,定值为.

【解析】

1)利用抛物线的定义可求得曲线的方程,由题意可得直线的方程为,设点,将直线的方程与抛物线的方程联立,列出韦达定理,利用三角形的面积公式可求得的面积;

2)假设满足条件的直线存在,其方程为,并设点,求出以为直径的圆的方程,将代入圆的方程,求出弦长的表达式,进而可求得的值,由此可求得直线的方程.

1)依题意得,曲线上的点到点的距离与到直线的距离相等,

所以曲线的方程为:.

过点且倾斜角为的直线方程为

,联立,得

,则

2)假设满足条件的直线存在,其方程为,设点

则以为直径的圆的方程为

将直线代入,得

设直线与以为直径的圆的交点为

于是有

,即时,为定值.

故满足条件的直线存在,其方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,侧棱与底面垂直,且分别是的中点,点在线段上,且.

1)求证:不论取何值,总有

2)当时,求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知6名某疾病病毒密切接触者中有1名感染病毒,其余5名健康,需要通过化验血液来确定感染者.血液化验结果呈阳性的即为感染者,呈阴性即为健康.

1)若从这6名密切接触者中随机抽取3名,求抽到感染者的概率;

2)血液化验确定感染者的方法有:逐一化验;分组混合化验:先将血液分成若干组,对组内血液混合化验,若化验结果呈阴性,则该组血液不含病毒;若化验结果呈阳性,则对该组的备份血液逐一化验,直至确定感染者.

i)采取逐一化验,求所需检验次数的数学期望;

ii)采取平均分组混合化验(每组血液份数相同),依据所需化验总次数的期望,选择合理的平均分组方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角ABC所对的边分别是abc,其面积S

1)若ab,求cosB

2)求sinA+B+sinBcosB+cosBA)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程和的直角坐标方程;

2)已知曲线的极坐标方程为,点是曲线的交点,点是曲线的交点,均异于原点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论的单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设.

(Ⅰ)求证:数列是等比数列;

(Ⅱ)若,求实数的最小值;

(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是自然对数的底数,,已知函数.

1)若函数有零点,求实数的取值范围;

2)对于,证明:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,MN分别为BCB1C1的中点,PAM上一点.过B1C1P的平面交ABE,交ACF

1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F

2)设O为△A1B1C1的中心,若AO=AB=6AO//平面EB1C1F,且∠MPN=,求四棱锥BEB1C1F的体积.

查看答案和解析>>

同步练习册答案