精英家教网 > 高中数学 > 题目详情

已知圆:内一定点, PQ为圆上的动点.(Ⅰ)若PQ两点关于过定点A的直线l对称,求直线l的方程;(Ⅱ)若,求线段PQ中点M的轨迹方程.

(Ⅰ)    (Ⅱ)


解析:

(Ⅰ)圆方程可化为,∴圆心(-1,3),半径为.

∵点PQ在圆上且关于直线l对称,∴圆心(-1,3)在直线l上.又直线l过点,由两点式得    即直线l的方程为   …………(6分)

   (Ⅱ)设PQ的中点为,∵,∴∴在中,, 连结CM,则,所以,所以

故线段PQ中点M的轨迹方程为.(12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l:2
2
x-y+3+8
2
=0
和圆C1:x2+y2+8x+F=0.若直线l被圆C1截得的弦长为2
3

(1)求圆C1的方程;
(2)设圆C1和x轴相交于A、B两点,点P为圆C1上不同于A、B的任意一点,直线PA、PB交y轴于M、N点.当点P变化时,以MN为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,S、T在圆C1上,且直线RS过圆心C1,∠SRT=30°,求点R的纵坐标的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),圆P过点B且与圆A内切,则圆心P的轨迹方程是
x2
25
+
y2
16
=1
x2
25
+
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
3
2
),椭圆C左右焦点分别为F1,F2,上顶点为E,△EF1F2为等边三角形.定义椭圆C上的点M(x0,y0)的“伴随点”为N(
x0
a
y0
b
).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆C1的方程为(x+2a)2+y2=a2,圆C1和x轴相交于A,B两点,点P为圆C1上不同于A,B的任意一点,直线PA,PB交y轴于S,T两点.当点P变化时,以ST为直径的圆C2是否经过圆C1内一定点?请证明你的结论;
(Ⅲ)直线l交椭圆C于H、J两点,若点H、J的“伴随点”分别是L、Q,且以LQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究△OHJ的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(2,2
3
)
在双曲线M:
x2
m2
-
y2
n2
=1(m>0,n>0)
上,圆C:(x-a)2+(y-b)2=r2(a>0,b∈R,r>0)与双曲线M的一条渐近线相切于点(1,2),且圆C被x轴截得的弦长为4.
(Ⅰ)求双曲线M的方程;
(Ⅱ)求圆C的方程;
(Ⅲ)过圆C内一定点Q(s,t)(不同于点C)任作一条直线与圆C相交于点A、B,以A、B为切点分别作圆C的切线PA、PB,求证:点P在定直线l上,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),圆P过B点且与圆A内切,求圆心P的轨迹方程.

查看答案和解析>>

同步练习册答案