精英家教网 > 高中数学 > 题目详情
已知f(x)=lnx+cosx,则f(x)在x=
π2
处的导数值为
 
分析:根据f(x)的解析式,求出f′(x),将x=
π
2
代入即可求得答案.
解答:解:∵f(x)=lnx+cosx,
∴f′(x)=
1
x
-sinx

∴f(x)在x=
π
2
处的导数值为f′(
π
2
)=
1
π
2
-sin
π
2
=
2
π
-1

∴f(x)在x=
π
2
处的导数值为
2
π
-1

故答案为:
2
π
-1
点评:本题考查了导数的运算,主要考查了常见的基本初等函数的求导,要熟练掌握这些基本初等函数的求导,它是解导数问题的必备条件.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(0,+∞)上的三个函数f(x)、g(x)、h(x),已知f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1处取得极值.
(1)求a的值及h(x)的单调区间;
(2)求证:当1<x<e2时,恒有x<
2+f(x)
2-f(x)

(3)把h(x)对应的曲线C1向上平移6个单位后得到曲线C2,求C2与g(x)对应曲线C3的交点的个数,并说明道理.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x+
a
x
(a∈R).
(1)求f(x)-g(x)的单调区间;
(2)若x≥1时,f(x)≤g(x)恒成立,求实数a的取值范围;
(3)当n∈N*,n≥2时,证明:
ln2
3
ln3
4
•…•
lnn
n+1
1
n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-
a
x

(Ⅰ)当a>0时,判断f(x)在定义域上的单调性;
(Ⅱ)若f(x)<x2在(1,+∞)上恒成立,试求a的取值范围;
(Ⅲ)若f(x)在[1,e]上的最小值为
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=x2-x,
(1)求函数h(x)=f(x)-g(x)的单调增区间;
(2)当x∈[-2,0]时,g(x)≤2c2-c-x3恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案