分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出a($\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$)=1,得到a($\frac{{x}_{1}{•x}_{2}}{{{x}_{1}+x}_{2}}$≥2,从而证出x1+x2>8.
解答 解:(Ⅰ)由∵$f'(x)=\frac{{{x^2}+x-2}}{x^2}=0$,x∈(0,+∞)
x=1或x=-2(舍)
∴当0<x<1时∴f'(x)<0,当x>1时∴f'(x)>0
∴f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞). (6分)
(Ⅱ)证明:依题意:$1-\frac{a}{{{x_1}^2}}+\frac{1}{x_1}=1-\frac{a}{{{x_2}^2}}+\frac{1}{x_2}⇒a(\frac{1}{x_1}+\frac{1}{x_2})=1$,
由于x1>0,x2>0,且x1≠x2,则有$a=\frac{{{x_1}•{x_2}}}{{{x_1}+{x_2}}}≥2⇒2({x_1}+{x_2})≤{x_1}•{x_2}<{(\frac{{{x_1}+{x_2}}}{2})^2}$
∴$2({x_1}+{x_2})<{(\frac{{{x_1}+{x_2}}}{2})^2}$⇒x1+x2>8. (12分)
点评 本题考查了函数的单调性问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,20) | B. | (0,8) | C. | (1,20) | D. | (4,16) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 2或-1 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限的角 | B. | 第二象限的角 | C. | 第三象限的角 | D. | 第四象限的角 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com