精英家教网 > 高中数学 > 题目详情
1.如图,AC是圆O的直径,ABCD是圆内接四边形,BE⊥DE于点E,且BE与圆O相切于点B.
(1)求证:CB平分∠ACE;
(2)若AB=6,BE=3,求AD的长.

分析 (1)证明∠BCA=∠BCE,即可证明:CB平分∠ACE;
(2)求出AC=4$\sqrt{3}$,CB=2$\sqrt{3}$,CE=$\sqrt{3}$,由切割线定理得EB2=EC•ED,即可求AD的长.

解答 (1)证明:∵BE与圆O相切于点B,
∴∠CBE=∠BAC.①
∵BE⊥DE
∴∠BCE=90°-∠CBE②
∴AC是圆O的直径,
∴∠BCA=90°-∠BAC③
由①②③得∠BCA=∠BCE,
即CB平分∠ACE.
(2)解:由(1)知△ABC∽△BEC
∴AB=6,BE=3,
∴$\frac{BC}{AC}=\frac{BE}{AB}=\frac{1}{2}$,即sin$∠CAB=\frac{1}{2}$,
∴∠CBE=∠CAB=30°,故AC=4$\sqrt{3}$,CB=2$\sqrt{3}$,CE=$\sqrt{3}$.
由切割线定理得EB2=EC•ED,
∴${3}^{2}=\sqrt{3}ED$,
∴$ED=3\sqrt{3}$,
∴CD=2$\sqrt{3}$,
∴AD=6.

点评 本题考查圆的切线的性质,考查切割线定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.三次函数f(x)=x3+ax+b+1在x=0处的切线方程为y=-3x-2
(1)求a,b;
(2)求f(x)单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>$\frac{1}{2}$时,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$),则f(6)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数h(x)=f′(x)+g(x)-1,试确定h(x)的单调区间及最值;
(Ⅲ)求证:对于任意的正整数n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=2,b=3,cosA=$\frac{2\sqrt{2}}{3}$,则sinB=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ax}{e^x}$+b的图象在点P(0,f(0))处的切线为y=x.
(1)求函数f(x)的解析式;
(2)若关于x的方程f(x)=k有两个不等实根x1,x2,求实数k的取值范围;
(3)在(2)的条件下,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,且斜边AB=2$\sqrt{2}$,侧棱AA1=3,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)求多面体C1B-ECD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设f(x)是定义在R上的周期为3的函数,右图表示该函数在区间(-2,1]上的图象,则f(2015)+f(2016)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(x2+ax)ex的两个极值为x1,x1,且x1+x1=-2-$\sqrt{5}$.
(1)求x1,x1的值;
(2)若f(x)在(c-1,c)(其中c<-1)上是单调函数,求c的取值范围;
(3)当m≤-e,求证:[f(x)+2ex]•[(x-2)ex-m+1]>$\frac{3}{4}$ex

查看答案和解析>>

同步练习册答案