精英家教网 > 高中数学 > 题目详情
11.三次函数f(x)=x3+ax+b+1在x=0处的切线方程为y=-3x-2
(1)求a,b;
(2)求f(x)单调区间和极值.

分析 (1)求出函数的导数,求出切线方程,根据系数对应,求出a,b的值即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:(1)f(x)=x3+ax+b+1,f′(x)=3x2+a,
f′(0)=a,f(0)=b+1,
切线方程是:y-(b+1)=ax,
即y=ax+b+1=-3x-2,
故a=-3,b=-3;
(2)f(x)=x3-3x-2,f′(x)=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
∴f(x)在(-∞,-1)递增,在(-1,1)递减,在(1,+∞)递增,
∴f(x)的极大值是f(-1)=0,f(x)的极小值是f(1)=-4.

点评 本题考查了切线方程问题,考查导数的应用以及函数的单调性、极值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足$\left\{\begin{array}{l}{-1≤x≤2}\\{0≤y≤2}\end{array}\right.$从区域W中随机取点M(x,y).
(1)若x∈Z,y∈Z,求点M位于第一象限的概率.
(2)若x∈R,y∈R,求|OM|≤2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的极值:
(1)y=x3-3x2+7;
(2)y=x-ln(1+x);
(3)y=x2e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.y=ln(sin(2x+$\frac{π}{3}$))的定义域为(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,AB是⊙O的直径,且AB=3,CD⊥AB于D,E为AD的中点,连接CE并延长交⊙O于F,若CD=$\sqrt{2}$,则EF=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设p:函数f(x)=logax(a>0且a≠1)在(0,+∞)上单调递增;
q:关于x的不等式x2+x+a>0恒成立.
若p或q为真命题,¬p或¬q也为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:实数x满足(x-a)(x-3a)<0(a>0),命题q:实数x满足x2-5x+6<0.
(1)当a=1时,若p∧q为真命题,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=ex-ax在[3,+∞)单调递增,则实数a的取值范围是(-∞,e3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AC是圆O的直径,ABCD是圆内接四边形,BE⊥DE于点E,且BE与圆O相切于点B.
(1)求证:CB平分∠ACE;
(2)若AB=6,BE=3,求AD的长.

查看答案和解析>>

同步练习册答案