精英家教网 > 高中数学 > 题目详情
19.y=ln(sin(2x+$\frac{π}{3}$))的定义域为(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

分析 根据函数y的解析式,列出使解析式有意义的不等式,求出解集即可.

解答 解:∵函数y=ln(sin(2x+$\frac{π}{3}$)),
∴sin(2x+$\frac{π}{3}$)>0,
∴2kπ<2x+$\frac{π}{3}$<π+2kπ,k∈Z,
解得kπ-$\frac{π}{6}$<x<$\frac{π}{3}$+kπ,k∈Z,
∴函数y的定义域为(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.
故答案为:(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z.

点评 本题考查了求函数定义域的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的体积为(  )
A.12B.30C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方体ABCD-A1B1C1D1上有一只蚂蚁,从A点出发沿正方体的棱前进,要它走进的第n+2条棱与第n条棱是异面的,则这只蚂蚁走过第2016条棱之后的位置是在(  )
A.点A1B.在点A处C.在点D处D.在点B处

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\frac{1}{3}$x3-x的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.给出下列命题:
①函数y=sinx具有“P(a)性质”;
②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;
③若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y=f(x)在(-2,-1)上单调递减,在(1,2)上单调递增;
④若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,函数y=f(x)是周期函数.
其中正确的是①③④(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDEF中,四边形ABCD是正方形,H为BC中点,且FH⊥平面ABCD,EF∥AB,∠BFC=90°,AB=2,EF=1.
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求二面角B-DE-C的大小;
(Ⅲ)求四面体B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.三次函数f(x)=x3+ax+b+1在x=0处的切线方程为y=-3x-2
(1)求a,b;
(2)求f(x)单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.sin27°cos63°+cos27°sin117°=(  )
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数h(x)=f′(x)+g(x)-1,试确定h(x)的单调区间及最值;
(Ⅲ)求证:对于任意的正整数n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e为自然对数的底数)

查看答案和解析>>

同步练习册答案