精英家教网 > 高中数学 > 题目详情
在△ABC中,设边A、B、C所对的边分别为a,b,c,已知A+C=2B,并且sinAsinC=cos2B,三角形的面积S△ABC=4
3
,求a,b,c.
考点:正弦定理,余弦定理
专题:解三角形
分析:A+C=2B,利用A+B+C=π,可得B=
π
3
.sinAsinC=cos2B=
1
4
,利用正弦定理可得
asin
π
3
b
csin
π
3
b
=
1
4
,可得3ac=b2
三角形的面积S△ABC=4
3
=
1
2
acsin
π
3
.可得ac=16.又b2=a2+c2-2accos
π
3
,即可得出.
解答: 解:∵A+C=2B,A+B+C=π,∴B=
π
3

∵sinAsinC=cos2B=
1
4
,三角形的面积S△ABC=4
3
=
1
2
acsin
π
3

asin
π
3
b
csin
π
3
b
=
1
4
,ac=16.
化为b2=48,b=4
3

b2=a2+c2-2accos
π
3

∴a2+c2=,与ac=16联立解得
a=4
3
+4
2
c=4
3
-4
2
a=4
3
-4
2
c=4
3
+4
2

∴a=4
3
+4
2
,b=4
3
,c=4
3
-4
2

或c=4
3
+4
2
,b=4
3
,a=4
3
-4
2
点评:本题考查了正弦定理与余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={x|-7<x<3},集合B={x|1<x<7},则A∪B=(  )
A、{x|-7<x<7}
B、{x|1<x<7}
C、{x|-7<x<3}
D、{x|1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,直线l过点(0,1).
(1)若k=4,求抛物线到直线l距离最近的点的坐标;
(2)若直线l与抛物线C相交于A、B两点,且OA⊥OB,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱台两底面为矩形,底面对角线交点连线为棱台高12cm上底周长112cm,下底长宽分别为54cm,30cm 求侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为3的等边△ABC中,设
BC
=3
BD
,则
AB
AD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是A、B、C所对的边,且asinAsinB+bcos2A=
2
a.
(1)求
sinB
sinA
的值;
(2)若c2=b2+
3
a2,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=a2x-2(a>0,a≠1)的图象恒过点A,若直线l:mx+ny-1=0经过点A,则坐标原点O到直线l的距离的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α∈(0,
π
6
),比较tan(sinα),tan(tanα),tan(cosα)的大小
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、棱柱的侧面可以是三角形
B、棱柱的侧面是平行四边形,而底面不是平行四边形
C、棱柱的各条棱都相等
D、正方体和长方体都是特殊的四棱柱

查看答案和解析>>

同步练习册答案