精英家教网 > 高中数学 > 题目详情
10.是否存在a,b,c使等式($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{a{n}^{2}+bn+c}{n}$对一切n∈N*都成立若不存在,说明理由;若存在,用数学归纳法证明你的结论.

分析 分别取n=1,2,3,得到关于a,b,c的方程组解得即可,先根据当n=1时,把n=1代入求值等式成立;再假设n=k时关系成立,利用变形可得n=k+1时关系也成立,综合得到对于任意n∈N*时都成立

解答 解:取n=1,2,3可得$\left\{\begin{array}{l}{a+b+c=1}\\{8a+4b+2c=5}\\{27a+9b+3c=14}\end{array}\right.$解得:a=$\frac{1}{3}$,b=$\frac{1}{2}$,c=$\frac{1}{6}$.
下面用数学归纳法证明($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{2{n}^{2}+3n+1}{6n}$=$\frac{(n+1)(2n+1)}{6n}$.
即证12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1),
①n=1时,左边=1,右边=1,∴等式成立;
②假设n=k时等式成立,即12+22+…+k2=$\frac{1}{6}$k(k+1)(2k+1)成立,
则当n=k+1时,等式左边=12+22+…+k2+(k+1)2═$\frac{1}{6}$k(k+1)(2k+1)+(k+1)2=$\frac{1}{6}$[k(k+1)(2k+1)+6(k+1)2]=$\frac{1}{6}$(k+1)(2k2+7k+6)=$\frac{1}{6}$(k+1)(k+2)(2k+3),
∴当n=k+1时等式成立;
由数学归纳法,综合①②当n∈N*等式成立,
故存在a=$\frac{1}{3}$,b=$\frac{1}{2}$,c=$\frac{1}{6}$使已知等式成立.

点评 本题主要考查归纳推理,数学归纳法,数列的通项等相关基础知识.考查运算化简能力、推理论证能力和化归思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=ln(-x2+2x+3)的定义域为(  )
A.{x|-3<x<1}B.{x|-1<x<3}.C.{x|x<-3或x>1}D.{x|x<-1或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a,b∈R,i是虚数单位,若a-i与2+bi互为共轭复数,且z=(a+bi)2,则z在复平面中所表示的点在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,A=30°,AB=3,$AC=2\sqrt{3}$,且$\overrightarrow{AD}+2\overrightarrow{BD}=\overrightarrow 0$,则$\overrightarrow{AC}.\overrightarrow{CD}$=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则该几何体外接球的面积(单位:cm2)等于(  )
A.55πB.75πC.77πD.65π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某数n3按上述规律展开后,发现右边含有“2017”这个数,则:n=45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题“?x∈R,x2-2ax+3≥0”是假命题,则实数a的取值范围为(  )
A.$a=\sqrt{3}$B.$a>\sqrt{3}$或$a<-\sqrt{3}$C.$-\sqrt{3}<a<\sqrt{3}$D.$-\sqrt{3}≤a≤\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(wx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将函数的图象向左平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=2sin(2x-$\frac{π}{3}$)B.g(x)=2sin(2x+$\frac{π}{6}$)C.g(x)=-2sin(2x-$\frac{π}{3}$)D.g(x)=-2sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三角形ABC中,$\overrightarrow{BC}=\overrightarrow{a},\overrightarrow{CA}=\overrightarrow{b}$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a-\overrightarrow b$B.$\overrightarrow b-\overrightarrow a$C.$\overrightarrow b+\overrightarrow a$D.$-\overrightarrow a-\overrightarrow b$

查看答案和解析>>

同步练习册答案