精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}满足a3=15且S4=64.
(1)求数列{an}的前n项和Sn
(2)求数列{|an|}的前n项和Tn

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出.
(2)由(1)可得:an=21-2n.令an≥0,取n≤10.当1≤n≤10时,|an|=an,即可得出数列{|an|}的前n项和Tn=Sn.当n≥11时,Tn=2S10-Sn

解答 解:(1)设等差数列{an}的公差为d,∵a3=15且S4=64.
∴a1+2d=15,$4{a}_{1}+\frac{4×3}{2}$d=64,
解得a1=19,d=-2.
∴Sn=19n-2×$\frac{n(n-1)}{2}$=-n2+20n.
(2)由(1)可得:an=19-2(n-1)=21-2n.
令an≥0,解得n≤$\frac{21}{2}$,取n≤10.
∴当1≤n≤10时,|an|=an
∴数列{|an|}的前n项和Tn=Sn=-n2+20n.
当n≥11时,Tn=a1+a2+…+a10-a11-…-an
=2S10-Sn
=2×(-102+20×10)-(-n2+20n)
=n2-20n+200.
∴Tn=$\left\{\begin{array}{l}{-{n}^{2}+20n,1≤n≤10}\\{{n}^{2}-20n+200,n≥11}\end{array}\right.$,(n∈N*).

点评 本题考查了等差数列的通项公式及其前n项和公式、含绝对值的数列求和问题,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求圆心在直线x-y-4=0上,且过两圆x2+y2-4x-6=0和x2+y2-4y-6=0的交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设x1,x2,…,xn的平均数是$\overline{x}$,方差是s2,则另一组数2x1+1,2x2+1,…2xn+1的平均数和方差分别是(  )
A.2$\overline{x}$,2s2+1B.2$\overline{x}$+1,4s2C.2$\overline{x}$,s2D.2$\overline{x}$+1,4s2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程($\frac{1}{3}$)x-log4x=0的解的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知数列{an}的前n项和Sn=(一1)n+1,求an
(2)数列{an}的前n项和Sn=3+2n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知Sn为正项数列{an}的前n项和,且满足Sn=$\frac{1}{2}$a${\;}_{n}^{2}$+$\frac{1}{2}$an(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=n•($\frac{1}{2}$)${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数:
(1)y=x4+cosx;
(2)y=$\frac{1}{\root{3}{x}}$+e3
(3)y=2x+ex+1;
(4)y=x-$\sqrt{x}$-$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算:$\frac{sin7°-sin15°cos8°}{cos7°-cos15°cos8°}$的值为-2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知c=2,C=$\frac{π}{3}$,且$\frac{1}{2}$absinC=$\sqrt{3}$,求a,b.

查看答案和解析>>

同步练习册答案