分析 (Ⅰ)求出数列的首项为1,将n换为n-1,两式相减可得an-an-1=1,由等差数列的通项公式,计算即可得到所求;
(Ⅱ)求得bn=n•($\frac{1}{2}$)${\;}^{{a}_{n}}$=n•($\frac{1}{2}$)n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.
解答 解:(Ⅰ)当n=1时,a1=S1=$\frac{1}{2}$a12+$\frac{1}{2}$a1,
解得a1=1(负的舍去),
Sn=$\frac{1}{2}$a${\;}_{n}^{2}$+$\frac{1}{2}$an(n∈N*),
将n换为n-1,可得Sn-1=$\frac{1}{2}$an-12+$\frac{1}{2}$an-1,
相减可得an=$\frac{1}{2}$an2-$\frac{1}{2}$an-12+$\frac{1}{2}$an-$\frac{1}{2}$an-1,
化为an+an-1=(an-an-1)(an+an-1),
可得an-an-1=1,
即有an=1+n-1=n;
(Ⅱ)bn=n•($\frac{1}{2}$)${\;}^{{a}_{n}}$=n•($\frac{1}{2}$)n,
前n项和Tn=1•$\frac{1}{2}$+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n,
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)2+2•($\frac{1}{2}$)3+3•($\frac{1}{2}$)4+…+n•($\frac{1}{2}$)n+1,
相减可得$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+($\frac{1}{2}$)4+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n+1,
化简可得Tn=2-$\frac{n+2}{{2}^{n}}$.
点评 本题考查数列的通项公式的求法,注意运用下标变换相减法,考查等差数列的通项公式,以及等比数列的求和公式,数列的求和方法:错位相减法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | tanα | B. | tan2α | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com