精英家教网 > 高中数学 > 题目详情
已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2是a2与a3的等差中项,且
lim
n→∞
an
bn
=
1
2
,求极限
lim
n→∞
1
a1b1
+
1
a2b2
+…+
1
anbn
)的值.
分析:首先利用等差数列的通项公式和数列极限的计算方法,结合已知条件,可以求出两数列的公差,从而求出an,bn,进而推出an、bn,然后利用裂项相消法可得
1
a1b1
+
1
a2b2
+…+
1
anbn
的表达式,最后求出其极限.
解答:解:{an}、{bn}的公差分别为d1、d2
∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),
∴2d2-3d1=2.
lim
n→∞
an
bn
=
lim
n→∞
3+(n-1)d1
2+(n-1)d2
=
d1
d2
=
1
2
,即d2=2d1
∴d1=2,d2=4.
∴an=a1+(n-1)d1=2n+1,bn=b1+(n-1)d2=4n-2.
1
anbn
=
1
(2n+1)•(4n-2)
=
1
4
1
2n-1
-
1
2n+1
).
∴原式=
lim
n→∞
1
4
(1-
1
2n+1
)=
1
4
点评:本题主要考查数列、数列极限等基本知识,同时考查了分析,推理的能力及运算能力,解题过程中充分运用了裂项求和法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案