精英家教网 > 高中数学 > 题目详情
(2012•顺义区一模)已知O是坐标原点,点A(-2,1),若点M(x,y)为平面区域
x-y+1≥0
y+1≥0
x+y+1≤0
,上的一个动点,则
OA
OM
的最大值为
3
3
分析:首先画出可行域,z=
OA
OM
代入坐标变为z=x+2y,即y=-2x+z,z表示斜率为-2的直线在y轴上的截距,故求z的最大值,即平移直线y=-2x与可行域有公共点时直线在y轴上的截距的最大值即可.
解答:解:如图所示:
z=
OA
OM
=-2x+y,即y=2x+z,
首先做出直线l0:y=2x,将l0平行移动,当经过B(-2,-1)点时在y轴上的截距最大,从而z最大.
因为B(-2,-1),故z的最大值为z=2×2-1=3.
故答案为:3.
点评:本题考查线性规划、向量的坐标表示、平面向量数量积的运算等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知集合M={0,1,3},N={x|x=3a,a∈M},则集合M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知i为虚数单位,则复数i(1-i)所对应点的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)如图给出的是计算
1
2
+
1
4
+
1
6
+…+
1
20
的值的一个程序框图,判断框内应填入的条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知椭圆G:
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
2
2
,⊙M过椭圆G的一个顶点和一个焦点,圆心M在此椭圆上,则满足条件的点M的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知直线l:x-y-1=0和圆C:
x=cosθ
y=1+sinθ
(θ为参数,θ∈R),则直线l与圆C的位置关系为(  )

查看答案和解析>>

同步练习册答案