精英家教网 > 高中数学 > 题目详情
(2009•台州二模)给定向量
a
b
满足|
a
-
b
|=2
,任意向量
c
满足(
a
-
c
)
(
b
-
c
)
=0,且|
c
|
的最大值与最小值分别为m,n,则m-n的值是(  )
分析:假设
a
=(0,2)、
b
=(0,0)、
c
=(x y),则由条件可得 x2+(y-1)2=1,故满足条件的向量
c
的终点在以(0,1)为圆心,半径等于1的圆上,
由此求得|
c
|
的最大值m与最小值n 的值,即可求得 m-n.
解答:解:∵向量
a
b
满足|
a
-
b
|=2
,任意向量
c
满足(
a
-
c
)
(
b
-
c
)
=0,
假设
a
=(0,2)、
b
=(0,0)、
c
=(x y),则有 (-x,2-y)•(-x,-y)=x2+y2-2y=x2+(y-1)2-1=0,
即  x2+(y-1)2=1,故满足条件的向量
c
的终点在以(0,1)为圆心,半径等于1的圆上,
|
c
|
的最大值与最小值分别为m=2,n=0,故 m-n=2,
故选A.
点评:本题主要考查两个向量的数量积的运算,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•台州二模)已知两条不同的直线m,l与三个不同的平面α,β,γ,满足l=β∩γ,l∥α,m?α,m⊥γ,那么必有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)下图是几何体ABC-A1B1C1的三视图和直观图.M是CC1上的动点,N,E分别是AM,A1B1的中点.
(1)求证:NE∥平面BB1C1C;
(2)当M在CC1的什么位置时,B1M与平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.
求:(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数X的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)将三个分别标有A,B,C的小球随机地放入编号分别为1,2,3,4的四个盒子中,则第1号盒子内有球的不同放法的总数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•台州二模)已知向量
a
b
c
满足|
a
|=1
|
a
-
b
|=|
b
|
(
a
-
c
)
(
b
-
c
)=0
.若对每一确定的
b
|
c
|
的最大值和最小值分别为m,n,则对任意
b
,m-n的最小值是(  )

查看答案和解析>>

同步练习册答案