| A. | 0<m<3或m<-1 | B. | 0<m<3 | C. | -1<m<3 | D. | m>3或m<-1 |
分析 先由题意求出函数为3为周期的周期函数,再根据函数为奇函数得到f(2)<2,代入解不等式即可.
解答 解:∵f($\frac{3}{2}$-x)=f(x),
∴f(x-$\frac{3}{2}$)=-f(x),
用$\frac{3}{2}$+x代换x得:f(x+$\frac{3}{2}$-$\frac{3}{2}$)=f(x)=-f(x+$\frac{3}{2}$);
用$\frac{3}{2}$+x代换x得:f(x+$\frac{3}{2}$)=-f(x+3)=-f(x);
即f(x)=f(x+3);
∴函数为以3为周期的周期函数,
∴f(x)=-f(-x),f(1)=-f(-1),f(-1)=f(2),
∴-f(2)=-f(-1)=f(1)>-2,
∴f(2)<2,
∴f(2)=m-$\frac{3}{m}$<2,
解得0<m<3,或m<-1,
故选:A
点评 本题考查函数的周期性和奇偶性的应用,解题时要认真审题,仔细解答,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=1,g(x)=x0 | B. | f(x)=$\root{3}{x}$,g(x)=$\frac{{x}^{2}}{x}$ | C. | f(x)=lnex,g(x)=elnx | D. | f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 | B. | 垂心 | C. | 外心 | D. | 内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (0,$\frac{2}{3}$) | D. | ($\frac{1}{2}$,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -7 | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | $3\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3+2$\sqrt{2}$ | B. | 9 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com