【题目】(本题16分)某乡镇为了进行美丽乡村建设,规划在长为10千米的河流OC的一侧建一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数
,
(单位:千米)的图象,且曲线段的顶点为
;观光带的后一部分为线段BC,如图所示.
(1)求曲线段OABC对应的函数
的解析式;
(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP, PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
![]()
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
,
时,求满足
的
的值;
(2)若函数
是定义在
上的奇函数.
①存在
,使得不等式
有解,求实数
的取值范围;
②若函数
满足
,若对任意
且
,不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格
(元)与时间
(天)的函数关系近似满足
(
为正常数).该商品的日销售量
(个)与时间
(天)部分数据如下表所示:
| 10 | 20 | 25 | 30 |
| 110 | 120 | 125 | 120 |
已知第10天该商品的日销售收入为121元.
(I)求
的值;
(II)给出以下二种函数模型:
①
,②
,
请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量
与时间
的关系,并求出该函数的解析式;
(III)求该商品的日销售收入
(元)的最小值.
(函数
,在区间
上单调递减,在区间
上单调递增.性质直接应用.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某神奇“黄金数学草”的生长图.第1阶段生长为竖直向上长为1米的枝干,第2阶段在枝头生长出两根新的枝干,新枝干的长度是原来的
,且与旧枝成120°,第3阶段又在每个枝头各长出两根新的枝干,新枝干的长度是原来的
,且与旧枝成120°,……,依次生长,直到永远.
![]()
(1)求第3阶段“黄金数学草”的高度;
(2)求第13阶段“黄金数学草”的高度;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(0<φ<π)
(1)当φ
时,在给定的坐标系内,用“五点法”做出函数f(x)在一个周期内的图象;
(2)若函数f(x)为偶函数,求φ的值;
(3)在(2)的条件下,求函数在[﹣π,π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,对于任意的
,都有
, 当
时,
,且
.
( I ) 求
的值;
(II) 当
时,求函数
的最大值和最小值;
(III) 设函数
,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资公司计划投资
,
两种金融产品,根据市场调查与预测,
产品的利润
与投资金额
的函数关系为
,
产品的利润
与投资金额
的函数关系为
.(注:利润与投资金额单位:万元)
(1)该公司已有100万元资金,并全部投入
,
两种产品中,其中
万元资金投入
产品,试把
,
两种产品利润总和表示为
的函数,并写出定义域;
(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
【答案】(1)
;(2)20,28.
【解析】
(1)设投入
产品
万元,则投入
产品
万元,根据题目所给两个产品利润的函数关系式,求得两种产品利润总和的表达式.(2)利用基本不等式求得利润的最大值,并利用基本不等式等号成立的条件求得资金的分配方法.
(1)其中
万元资金投入
产品,则剩余的
(万元)资金投入
产品,
利润总和为:
,
(2)因为
,![]()
所以由基本不等式得:
,
当且仅当
时,即:
时获得最大利润28万.
此时投入A产品20万元,B产品80万元.
【点睛】
本小题主要考查利用函数求解实际应用问题,考查利用基本不等式求最大值,属于中档题.
【题型】解答题
【结束】
20
【题目】已知曲线
.
(1)求曲线在
处的切线方程;
(2)若曲线在点
处的切线与曲线
相切,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com