精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C的对边分别为a、b、c,且a2+c2-
2
ac=b2
.求角B.
考点:余弦定理
专题:三角函数的求值
分析:利用余弦定理列出关系式,结合已知等式求出cosB的值,即可确定出B的度数.
解答: 解:∵a2+c2-
2
ac=b2,即a2+c2-b2=
2
ac,
∴由余弦定理得cosB=
a2+c2-b2
2ac
=
2
ac
2ac
=
2
2

∵B为三角形的内角,
∴B=45°.
点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一条河的两岸平行,河的宽度d=500m,一艘船从A处出发到河对岸,已知船的静水速度
v1
=10km/h,水流速度
v2
=2km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论:
(1)当船逆流行驶,与水流成钝角时;
(2)当船顺流行驶,与水流成锐角时;
(3)当船垂直于对岸行驶,与水流成直角时.
请计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=-x2+ax-3.
(Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx>
1
ex
-
2
ex
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3+
1-a
2
x2
-ax-a(a>0).
(1)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数f(x)在区间[t,t+3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级.某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场中有2人10分,3人9分,从这5人中随机抽取2人,求2人成绩之和为19分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn.已知a1=6,an+1=3Sn+5n,n∈N*
(1)设bn=Sn-5n,求数列{bn}的通项公式;
(2)数列{bn}中是否存在不同的三项,它们构成等差数列?若存在,请求出所有满足条件的三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若n∈N*,且n为奇数,则6n+C
 
1
n
•6n-1+C
 
2
n
•6n-2+…+C
 
n-1
n
•6被8除所得的余数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,若
m
=(2,cos2C-1),
n
=(sin2
A+B
2
,1)且
m
n

(1)求角C的大小;
(2)若c=
3
,△ABC的面积S=
3
2
,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的全面积
 

查看答案和解析>>

同步练习册答案