精英家教网 > 高中数学 > 题目详情
已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个顶点,BC过椭圆中心O,如图,且
AC
BC
=0
,|BC|=2|AC|.
(1)求椭圆的方程;
(2)如果椭圆上两点P、Q使∠PCQ的平分线垂直AO,则总存在实数λ,使
PQ
AB
,请给出证明.
(1)以O为原点,OA所在的直线为x轴建立如图所示的直角坐标系,
则A(2,0),设所求椭圆的方程为:x2+
y2
b2
=4(0<b<1),由椭圆的对称性知|OC|=|OB|,
AC
BC
=0得AC⊥BC,
∵|BC|=2|AC|,
∴|OC|=|AC|,
∴△AOC是等腰直角三角形,
∴C的坐标为(1,1),
∵C点在椭圆上
1+
1
b2
=4,
∴b2=
1
3
,所求的椭圆方程为x2+3y2=4.
(Ⅱ)由于∠PCQ的平分线垂直OA(即垂直于x轴),
不妨设直线PC的斜率为k,则直线QC的斜率为-k,
直线PC的方程为:y=k(x-1)+1,直线QC的方程为y=-k(x-1)+1,
y=k(x-1)+1
x2+3y2-4=0
得:(1+3k2)x2-6k(k-1)x+3k2-6k-1=0(*)
∵点C(1,1)在椭圆上,
∴x=1是方程(*)的一个根,则其另一根为
3k2-6k-1
1+3k2
,设P(xP,yP),?Q(xQ,yQ),xP=
3k2-6k-1
1+3k2
,同理xQ=
3k2+6k-1
1+3k2

kPQ=
yp-yQ
xP-xQ
=
k(xP+xQ)-2k
xP-xQ
=
k(
3k2-6k-1
1+3k2
+
3k2+6k-1
1+3k2
)-2k
3k2-6k-1
1+3k2
-
3k2+6k-1
1+3k2
=
1
3

而由对称性知B(-1,-1),又A(2,0),
∴kAB=
1
3

∴kPQ=kAB
AB
PQ
共线,且
AB
≠0,即存在实数λ,使
PQ
AB
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

与圆外切,且与y轴相切的动圆圆心的轨迹方程为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出”黄金双曲线”的离心率e等于       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点P到x轴的距离比它到点(0,1)的距离小1,称点P的轨迹为曲线C,点M为直线l:y=-m(m>0)上任意一点,过点M作曲线C的两条切线MA,MB,切点分别为A,B.
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且准线方程为x=-1.
(1)求抛物线C的标准方程;
(2)过抛物线C焦点的直线l交抛物线于A,B两点,如果要同时满足:①|AB|≤8;②直线l与椭圆3x2+2y2=2有公共点,试确定直线l倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x+2与双曲线
x2
m
-
y2
3
=1有两个公共点,则m的
取值范围是(  )
A.m>-1且m≠3B.0<m<7且m≠3C.m>7D.m<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.

查看答案和解析>>

同步练习册答案