精英家教网 > 高中数学 > 题目详情
已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.
(1)由题意可设椭圆C的标准方程为
x2
a2
+
y2
b2
=1
(a>b>0),半焦距为c.
∵椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点,∴c=
2+6
=2
2

∵△ABF2的周长为8
3
,∴|AB|+|AF2|+|BF2|=8
3
,∴|AF1|+|BF1|+|AF2|+|BF2|=8
3

由椭圆的定义可得4a=8
3
,解得a=2
3

∴b2=a2-c2=4.
∴椭圆C的方程为
x2
12
+
y2
4
=1

(2)联立
y=t
x2
12
+
y2
4
=1
,解得
x=±
12-3t2
y=t

不妨设E(-
12-3t2
,t)
,F(
12-3t2
,t)

∵以线段EF为直径所作的圆M与x轴相切,∴r=t=
12-3t2
,解得t=
3

∴圆心为(0,
3
).
∴圆M的方程为x2+(y-
3
)2=3

圆心(0,
3
)到直线x-
3
y+1=0
的距离d=
|0-3+1|
1+(
3
)2
=1.
∴圆M被直线x-
3
y+1=0
截得的线段长=2
r2-d2
=2
3-1
=2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A、B、C是长轴长为4的椭圆上的三点,点A是长轴的一个顶点,BC过椭圆中心O,如图,且
AC
BC
=0
,|BC|=2|AC|.
(1)求椭圆的方程;
(2)如果椭圆上两点P、Q使∠PCQ的平分线垂直AO,则总存在实数λ,使
PQ
AB
,请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2
,过点B(2,0)的直线l与椭圆交于不同的两点M、N.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
.
BM
.
BN
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的渐近线为y=±
3
3
x且过点M(
6
,1).
(1)求双曲线C的方程;
(2)若直线l:y=kx+m,(m≠0)与双曲线C相交于A,B两点,D(0,-1)且有|AD|=|BD|,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的两条渐近线方程是y=x和y=-x,且过点D(
2
3
)
.l1,l2是过点P(-
2
,0)
的两条互相垂直的直线,且l1,l2与双曲线各有两个交点,分别为A1,B1和A2,B2
(1)求双曲线的方程;
(2)求l1斜率的范围
(3)若|A1B1|=
5
|A2B2|
,求l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点为F1,F2,离心率为
2
2
,以线段F1F2为直径的圆的面积为π,设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,
(1)求椭圆的方程;
(2)若线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围;
(3)求△ABF1面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c;若以F2为圆心,b-c为半径作圆F2,过椭圆上任一点P(x0,y0)作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)证明:|PF2|的最小值为a-c;
(Ⅱ)求椭圆的离心率e的取值范围;
(Ⅲ)若椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为2的直线l与椭圆交于A、B两点,若OA⊥OB,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内一点P与两个定点F1(-
3
,0)
F2(
3
,0)
的距离的差的绝对值为2.
(Ⅰ)求点P的轨迹方程C;
(Ⅱ)设过(0,-2)的直线l与曲线C交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的焦点,P为椭圆上的点,PF1⊥OX轴,且OP和椭圆的一条长轴顶点A和短轴顶点B的连线AB平行.
(1)求椭圆的离心率e
(2)若Q是椭圆上任意一点,证明∠F1QF2
π
2

(3)过F1与OP垂直的直线交椭圆于M,N,若△MF2N的面积为20
3
,求椭圆方程.

查看答案和解析>>

同步练习册答案