精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2
,过点B(2,0)的直线l与椭圆交于不同的两点M、N.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
.
BM
.
BN
的取值范围.
(Ⅰ)由椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2

可得
e=
c
a
=
2
2
1
a2
+
1
2b2
=1
a2=b2+c2
,解得
a2=2
b=c=1

∴椭圆的方程为
x2
2
+y2=1

(Ⅱ)由题意可知直线l的斜率存在,设其方程为y=k(x-2).
设M(x1,y1),N(x2,y2).由
y=k(x-2)
x2
2
+y2=1
得(1+2k2)x2-8k2x+8k2-2=0.
△=64k4-4(1+2k2)(8k2-2)>0,得0≤k2
1
2

x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

BM
=(x1-2,y1)
BN
=(x2-2,y2)

BM
BN
=(x1-2)(x2-2)+y1y2=(1+k2)(x1-2)(x2-2)=(1+k2)[x1x2-2(x1+x2)+4]=(1+k2)
2
1+2k2
=1+
1
1+2k2

0≤k2
1
2
,∴
3
2
<1+
1
2k2
≤2

.
BM
.
BN
的取值范围是(
3
2
,2]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,椭圆中心在坐标原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出”黄金双曲线”的离心率e等于       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x+2与双曲线
x2
m
-
y2
3
=1有两个公共点,则m的
取值范围是(  )
A.m>-1且m≠3B.0<m<7且m≠3C.m>7D.m<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
3
2
),F1,F2分别为椭圆C的左右焦点,且离心率e=
1
2

(1)求椭圆C的方程.
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直线AB的斜率.

查看答案和解析>>

同步练习册答案